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Cancer expansion depends on host organ conditions that permit growth. Since such
microenvironmental nourishment is limited we argue here that an autologous, therapeutically
engineered and faster metabolizing cell strain could potentially out-compete native cancer cell
populations for available resources which in turn should contain further cancer growth. This
hypothesis aims on turning cancer progression, and its microenvironmental dependency, into a
therapeutic opportunity. To illustrate our concept, we developed a three-dimensional
computational model that allowed us to investigate the growth dynamics of native tumor cells
mixed with genetically engineered cells that exhibit a higher proliferation rate. The simulation
results confirm in silico efficacy of such therapeutic cells to combating cancer cells on site in that
they can indeed control tumor growth once their proliferation rate exceeds a certain level. While
intriguing from a theoretical perspective, this bold, innovative ecology-driven concept bears some
significant challenges that warrant critical discussion in the community for further refinement.

Background and hypothesis
Amongst the distinct hallmarks of cancer are uncontrolled
growth and extensive cellular heterogeneity [1]. The 'ecol-
ogy' concept here is based on the analogy that the host
organ serves as 'bio-habitat' for a rapidly expanding heter-
ogeneous tumor cell population, and that the organ's dis-
tinct microenvironmental conditions on site only support
a certain tumor growth rate and overall tumor mass –
prior to the onset of metastasis [2]. If so, one wonders if a
tumor could be 'out-competed' for habitat dominance by
an autologous cell population that has been engineered to
outgrow the tumor cell populations, yet – other than the
native cancer cells – can be therapeutically controlled.
One can imagine a primary, autografted tumor cell line
established from the patient's own tumor (biopsied at the
time of operation) that has been genetically engineered to
carry an on-off switch that can trigger programmed cell

death, or apoptosis, 'on demand'. The corner stone of this
innovative concept is to therapeutically skip any number
of tumor progression steps by deliberately inserting an
autologous cell population that securely outperforms even
the most aggressive native cancer cell clone (see Figure 1).

The performance requirements for this therapeutic cell
population include (i) its proliferation rate must exceed
that of the most aggressive native tumor cells; (ii) it
should exhibit a reduced apoptotic rate, and, (iii) it must
exhibit a high metabolic consumption rate – thereby
quickly exhausting the limited resources available to the
native tumor cells on site. Assuming that tumor growth is
bound by the microenvironmental conditions, we have
defined already in [2] the quantitative relationship
between the tumor growth rate and an organ's carrying
capacity, CC as:
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Understanding that VTum represents the composite volume
of multiple native clones, with distinct proliferative phe-
notype, and arguing that the therapeutic cell population,
PT, must outgrow the native tumor, we revise Eq. (1) to:

From Eq. (2) follows first that our competition concept
should hold primarily at tumor growth stages prior to
reaching CC, ahead of the onset of metastasis. However,
within that limit one can argue for some flexibility, pre-
cisely due to the impact of the tumor. That is, as detailed
in [2], CC is defined as the ratio of an organ's composite
volume infrastructure and the physiological functionality
it has to provide. Both, a tumor-induced improvement in
growth permission or nourishment (e.g., through angio-
genesis or cooperative paracrine secretion of growth fac-
tors) as well as any cancer growth related (e.g.,
proteolytic) reduction of tissue functionality would yield
an increase in CC. The following section describes the in
silico model developed to test our hypothesis on inducing
'therapeutic competition'.

Methods
To investigate the effects of engineered cells on the growth
of native tumor cells, we present here a three-dimensional
(3D) agent-based model that simulates the growth
dynamics of both types of cells in parallel. An agent-based
model can exhibit aggregated complex behavior patterns
upon interactions among agents, and between agents and

their environments [3]. Specifically, in modeling cancer
systems, an agent often represents an individual cell [4-8].
For now, native tumor cells and engineered cells have the
same metabolic and apoptotic rates (an assumption that
will be relaxed in future works), but have distinctively dif-
ferent proliferation rates. In our model here, each cell is
capable of gaining a certain number of 'proliferation'
credits (PCs) at every point in time. If accumulated PCs in
a given cell exceed a set threshold, the cell is eligible to
proceed with proliferation. This proliferation threshold is
pre-defined and (for now, reflecting ubiquitous metabolic
house keeping in the same cell lineage) equal for both cell
types (an assumption that, again, can easily be relaxed
later on). In our model, this proliferation threshold is cur-
rently set to 100; however, when a cell has collected (at
least) 100 PCs, it does not necessarily mean that the cell
will immediately start proliferating; rather, it will have to
meet some other microenvironmental conditions (see
below). Native tumor cells and engineered cells gain dis-
tinct amounts of PCs at every time step, reflecting different
proliferative capabilities (rates) of the two different cell
types. We denote PCTC for the PCs for a native tumor cell,
and PCEC for an engineered cell. In accordance with our
concept (see also Eq. (2)), PCEC should always be higher
than PCTC. Finally, we purposely set the range of PCTC to
1~33 such that we will have enough bandwidth left (i.e.,
34~99; the maximum proliferation rate going to be tested
is 99, because the threshold for proliferation has been set
to 100) for PCEC in examining the dynamics of how engi-
neered cells combat native tumor cells.

Tumor growth environment
The tumor's 3D virtual microenvironment is represented
by a discrete cube of 100 × 100 × 100 grid points. Initially,
50 native tumor cells are randomly seeded in a smaller
cube (5 × 5 × 5 grid points) that is located at the center of
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The time series schematic depicts the growth of the red, therapeutically engineered (tumor) cell clone within a native (grey) tumor cell population (patterning represents inhomogeneity of the cell population)Figure 1
The time series schematic depicts the growth of the red, therapeutically engineered (tumor) cell clone within a native (grey) 
tumor cell population (patterning represents inhomogeneity of the cell population). Once the altered clone dominates the 
tumor population on site, it could be selectively therapeutically targeted.
Page 2 of 9
(page number not for citation purposes)



Cancer Cell International 2008, 8:19 http://www.cancerci.com/content/8/1/19
the larger, microenvironmental cube. The initial number
of engineered cells implanted is 10, randomly distributed
in a cube consisting of 3 × 3 × 3 grid points. The position
of this 'therapeutic' cube can be any of the 8 vertices of the
cube for native tumor cells. A certain amount of nourish-
ment, represented by glucose, is uniformly distributed in
the 3D environment and will be consumed by each viable
cell. Figure 2(a) summarizes the setup of the 3D environ-
ment.

Cellular phenotype
Three cell phenotypes are currently considered: prolifera-
tion, quiescence, and apoptosis or death, each for both
cell types. Figure 2(b) schematically illustrates our algo-
rithm on determining phenotypic changes. In brief, a cell
will die if its nourishing, on-site glucose concentration
drops below a pre-defined threshold. The threshold value
and glucose consumption rate of a live cell are obtained
from an in vitro study on mammary carcinoma cell sphe-
roid growth [9], and have been rescaled to fit our model
(for more details, please see our previous works [7,10]). A
cell starts to proliferate if 1) its PCs exceed the prolifera-
tion threshold, as described above, and if 2) the onsite
glucose concentration is sufficient, i.e. meets the require-
ment of keeping a cell alive. The cell then starts to search
for an appropriate location for its offspring to reside in
(candidate locations are the six grid points surrounding
the cell). In our model, the most appropriate location is
the one with the highest glucose concentration; if there is
more than one location meeting this condition, the cell
will randomly choose one. When a cell cannot find an
empty location (i.e., a vacant grid point) to proliferate
into, it will remain quiescent and continue to search for
an empty location at the next time step. For simplicity, all
initial native tumor cells and engineered cells start with a
quiescent state.

Tumor growth law
Tumor growth has been described by using a range of
kinetics including for instance the Gompertz law and,
more recently, the so called 'universal' law [11-14] which
is based on underlying metabolic concepts and thus used
in here. That is, within the range of 1~33, we attempt to
test and find the most appropriate PCTC, i.e., the PCTC
which best fits the universal tumor growth law. As
reported in [11], the relative amount of energy devoted to
tumor growth can be related to the proportion ΔN/N of
the cells contributing to the growth,

where N is the total tumor cell number and ΔN is the dif-
ference between the rates of generated to dead tumor cells
at one time step; τ represents the rescaled dimensionless

time and can be calculated by using the following equa-
tion [12]:

where m0 is the tumor mass at origin (t = 0), M is the final
mass, and a is a parameter relating to a tumor's character-
istics, such as its ability to metastasize or invade. Accord-
ing to the model's setup, a total of 50 native tumor cells
are initially placed in the center of the cube. A simulation
run elapses for 100 time steps, and each simulation run
generates a time-series data of (ΔN/N). As a result, there
will be a total of 33 sets of such time-series data being gen-
erated, corresponding to 33 possible PCTC.

We selected three sets of tumor growth parameters (i.e.,
with different a, m0, and M in Eq. (4); see Table 1), repre-
senting in vitro, in vivo, and clinical tumor data, respec-
tively. Three sets of time-series data of eτ will then be
generated (see Eq. (4)). To seek the most appropriate
PCTC for each of the three sets of eτ obtained using the uni-
versal law, we calculate correlation coefficients between
(1) the 33 sets of time-series data from our simulation
results (ΔN/N), and (2) the time-series data of eτ. This ana-
lytical process results in a number of 33 correlation coef-
ficients for each of the three time-series data (i.e., eτ for in
vitro, in vivo, and clinical tumor data, respectively). Statis-
tically, a correlation coefficient is used for measuring the
degree of closeness of two variables; hence, the correlation
coefficient here is a measure of how well the simulated
tumor growth data (ΔN/N) fit with the three types of real
biomedical data: the higher the correlation coefficient, the
stronger is the (positive) relationship between the two
data sets compared.

Results
The model was developed in C/C++ and is based in part
on our previously presented agent-based modeling plat-
forms [10,15].

First, the most appropriate proliferation rate for tumor
cells, PCTC, was determined using the model. Figure 3
shows correlation coefficients between the tumor growth
data generated by our simulations and by the universal
law, for (a) in vitro, (b) in vivo, and (c) clinical data,
respectively. In all three panels, the correlation coefficient
values peaked at numbers: 30~33. This means that when
PCTC lays within 30~33, i.e., when a tumor cell receives
30~33 PCs at each time point, the simulated tumor
growth follows the universal law the closest; hence, we
chose to set PCTC = 30 for the subsequent simulations in
which both types of cells were taken into account. We per-
formed simulations, all with PCTC = 30, to investigate
effects of different values of PCEC within a range of 34~99

ΔN
N

e≈ −t (3)
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(a) Three-dimensional tumor growth environment with 100 × 100 × 100 grid pointsFigure 2
(a) Three-dimensional tumor growth environment with 100 × 100 × 100 grid points. Native tumor cells and engineered cells 
are randomly distributed in different cubes, indicated by gray and red, respectively. (b) Cell phenotypic decision algorithm. G 
represents glucose and PC represents proliferation credit; GThreshold and PCThreshold denote the threshold for glucose and prolifer-
ation rate, respectively.
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on suppressing the growth of tumor cells. The maximum
simulation step was again set to 100. Figure 4 displays two
representative simulation results, with (a) PCEC = 34 and
(b) PCEC = 99. The final cell populations of (b) exceed
that of (a) due to a larger number of newly generated ECs.

However, comparing the distinct cell populations only is
insufficient for determining 'success' of our concept; that
is, at any step, even if the number of engineered cells by
far outweighs the number of native tumor cells, conceiva-
bly some cancer cells continue to proliferate, hence may
be able to escape. Therefore, we sought two critical time
points in investigating the growth dynamics of the mixed
cell population. The first is the time at which the number
of engineered cells starts to exceed the number of native
tumor cells, whereas the 2nd critical point is reached
when native tumor cells seize to grow which in turn indi-
cates that engineered cells established control. The effects
of different PCEC on ECs out-competing TCs are shown in
Figure 5, where for each PCEC, the corresponding two crit-
ical points are depicted. Overall, expectedly, ECs exceed
TCs in number prior to controlling them. The plot also
shows that, a higher EC proliferation rate (i.e., higher
PCEC) leads to reaching the 2nd critical time point faster
than a lower PCEC does. However, while a PCEC of 67 leads
to the fastest control, any further increases fail to show
added therapeutic value.

Finally, the growth dynamics of the mixed cells with PCTC
= 30 and PCEC = 67 are shown in Figure 6. As the simula-
tion progresses, the number of ECs continuously
increases, whereas the growth of TCs shows an interesting
pattern in that up until time step 76, the number of TCs
continuously increases, while it begins to decline thereaf-
ter. This result demonstrates that native tumor cells, once
completely controlled, seem to be unable to regrow. To
investigate these patterns further, we divided the cancer
growth into three phases: TCs will first experience a phase
(t = 1–66) where they continue to grow while they start
competing with ECs for limited resources. Growth then
enters a phase (t = 67–83) where the number of alive TCs
remains stable in that the number of newly generated TCs
is equal to those that become apoptotic. Finally, the can-
cer volume starts to decrease (t = 84–100) as the rate of TC
growth becomes negative.

Discussion and conclusions
Despite undeniable progress over the last decades, overall
the clinical outcome of many common cancer types
remains discouraging [16]. For 2008, in the Unites States
alone, a total of 1,437,180 new cancer cases and 565,650
deaths from cancer are estimated [17]. As such, new, bold
concepts are desperately needed. Here, we propose that,
based on the reasonable argument that cells depend in
their metabolism on limited microenvironmental permis-

Table 1: Parameters for selected tumors

Tumor m0 (g) M (g) a (g0.25/day) Reference

in vitro Human Glioblastoma 0.025 3 0.075 [25]
in vivo Murine adenocarcinoma 0.2 8 0.37 [26]
clinical Human breast cancer 1 646 0.81 [27]

Correlation coefficient (y-axis) plots of the tumor growth data obtained from the universal law and simulations varying the value of PCTC (x-axis)Figure 3
Correlation coefficient (y-axis) plots of the tumor growth data obtained from the universal law and simulations varying the 
value of PCTC (x-axis). (a) Human Glioblastoma in vitro data; (b) mouse adenocarcinoma in vivo data. (c) Human breast cancer 
data from patients.
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Growth of native tumor and engineered cells for (a) PCTC = 30 and PCEC = 34, and (b) PCTC = 30 and PCEC = 99Figure 4
Growth of native tumor and engineered cells for (a) PCTC = 30 and PCEC = 34, and (b) PCTC = 30 and PCEC = 99. In both (a) 
and (b), from top to bottom, results are displayed for all cells, native tumor cells and engineered cells, respectively. Note: pro-
liferative native tumor cells are labeled in blue, quiescent native tumor cells in green, proliferative engineered in red, quiescent 
engineered cells in orange, and dead cells for both cell types are labeled in grey.
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sion, one could potentially attempt to deplete and ulti-
mately outgrow a solid tumor by deliberately introducing
a population of rapidly metabolizing, therapeutic cancer
cells. (To reduce the threat of immunologic rejection)
these autologous cells would be harvested via biopsy from

the patient's own tumor, ex vivo genetically engineered to
bolster their growth rate while inserting effective safe-
guards, and then re-injected on site to eventually control
tumor cells solely by competing more successfully for lim-
ited resources. We note that, originally, the now highly
publicized paradigm of anti-angiogenesis was built on the
very same premise, i.e. to therapeutically reduce vascular-
ization and thus starve the tumor of the extrinsic nutrients
it so critically depends on [18]. Our concept, however, is
based on the introduction of intrinsic competition and to
illustrate it, we have developed a computational, agent-
based model where engineered cells differ from native
tumor cells in their proliferation rate. We simulate the effi-
cacy of such therapeutic cells, exhibiting different prolifer-
ation rates, on out-competing and eventually controlling
native tumor cells.

The difference in the resulting growth patterns of tumors
(sub-figures in the 2nd row of Figure 4(a) and 4(b)), with
PCEC = 34 and PCEC = 99, may seem surprising at first since
the PCTC for both simulations has been the same. How-
ever, this can be explained by the fact that the more engi-
neered cells are generated, the more likely it is that an
empty location in the cube is occupied by these cells; thus,
engineered cells in a simulation with higher PCEC rapidly
enlarge their domain, which in turn prevents native tumor
cells from replication since the possibility of finding an
empty lattice location for their offspring to reside in is
becoming increasingly low. Furthermore, not only the
resulting growth patterns but also the tumor volumes (i.e.,
number of viable tumor cells) are different. That is, the
one in (b) is smaller than that in (a), which implies that
tumor cells are controlled more effectively in (b). For
instance, at time step 100, tumor cells are still proliferat-
ing in (a), while in (b) they have already become entirely
growth-suppressed. Thus, higher PCEC achieved faster
tumor suppression which is the result of a sequence com-
bining growth arrest (competition for space) with subse-
quent cell death (competition for nourishment) as
illustrated in Figure 6. Based on our results, a two fold
increase in EC proliferation rate (PCEC) led to a marked
acceleration in tumor control; also, there is an optimum
value for PCEC, that is, increasing PCEC beyond 67 fails to
add therapeutic value (Figure 5). Together, this argues for
a target range in engineering these cells to replicate faster.
To provide more insights into a potential clinical scenario,
we divide the observed TC dynamics into three phases
(see Figure 6). While these time frames very likely depend
on a number of parameters in addition to the prolifera-
tion rates, such as metabolic and apoptotic rates as well as
organ type and thus specific carrying capacity, existence of
this last phase – where tumor growth is not only control-
led but tumor cells actually start to decline in number –
seems to support our in silico concept and therefore war-
rants further investigations.

Effects of change in PCEC (x-axis) on out-competing native tumor cells (TCs)Figure 5
Effects of change in PCEC (x-axis) on out-competing native 
tumor cells (TCs). For each PCEC, two critical points are 
depicted: first, when engineered cells (ECs) exceed TCs in 
number (dashed line in red with star markers) and then when 
all TCs are surrounded by ECs (dashed line in blue with point 
markers), resulting in tumor growth inhibition.
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Cell number (logarithmic scale; y-axis) vs. time step (linear 
scale; x-axis) for a simulation with PCTC = 30 and PCEC = 67 
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However, to provide more detailed quantitative insights
into the relationship between tumor cells and engineered
cells, we need to amend the current setup in future works.
First, we will need to explore the impact of different met-
abolic rates; that is, engineered cells have to sustain a
higher proliferation rate and thus their metabolic con-
sumption should be distinct to reflect the demand; this
may require a dynamic adjustment of the proliferation
threshold. However, qualitatively, coupling of the engi-
neered cells' higher proliferation rate to a more pro-
nounced metabolic consumption rate, should only
accelerate tumor control, hence is largely a means to con-
tain growth of the therapeutic cell line itself. Second, the
current microenvironment is overly simplified as only
glucose plays a role in determining cell phenotypic transi-
tions. As such, other key environmental factors, such as
gradients in oxygen and growth factors [19-22], can be
integrated into the lattice. Thirdly, heterogeneous cells
should not only compete with each other for limited
nutrient resources, but may also be able to co-exist and
potentially even cooperate for performing physiological
activities [2].

While the underlying ecology concept of therapeutically
exploiting controlled progression to outperform and over-
grow the native tumor cell population on site by an
aggressively expanding yet therapeutically manageable
clone is strikingly simple, careful consideration reveals a
number of very significant technical challenges involved
in putting this concept into practice. Those include (i) a
potentially inductive effect for local tumor invasion and
distant metastasis. This is based on the hypothesis that
tumors tend to increase their overall surface through spa-
tio-temporal expansion in an effort to avoid the limits
imposed by diffusive yet dwindling microenvironmental
supplies [23]. Since the metabolism of the engineered
cells practically reduces the carrying capacity, CC, the
incentive for tumor cells to start invasion and accelerate
metastasis should be increased (see Eq. (1)). Tumor
induced neovascularization should temporarily stabilize
CC, and as such, simultaneous anti-angiogenetic therapy
would likely increase the effectiveness of our proposed
approach, while adding anti-invasive measures, as far as
available, should increase its safety. Related critical issues
are (ii) how can one ensure that the therapeutic clone
remains genetically stable and thus phenotypically robust
so that it neither risks being outdone by the tumor's own
ability to progress under stress, nor that it itself mutates to
an uncontrollably aggressive strain? Moreover, since the
approach is based on the notion of competition amongst
cells, any evolvement of cooperation [24] could jeopardize
the therapeutic result. Lastly, (iii) which therapeutic safe-
guards have to be inserted where to guarantee precise
monitoring of the engineered clone in situ, and how,
when and where can these therapeutic cells be targeted

safely and effectively to avoid that they themselves become
a risk for the patient (by e.g. increasing biomechanical
pressure on site)?

While this list of technical challenges is by no means
exhaustive yet surely already daunting, the theoretical
appeal of an innovative, ecology-concept driven therapy
that turns the tumor's well known ability to progress
under stress into a therapeutic virtue is undeniable, hence
should warrant further in silico and experimental investi-
gations into its potential risks and benefits.
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