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Abstract

Background: SATBI is a nuclear protein that has been recently reported to be a 'genome organizer' which
delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes
while down-regulating tumor-suppressor genes. In this study, the level of MRNA expression of SATB| and SATB2
were assessed in normal and malignant breast tissue in a cohort of women with breast cancer and correlated to
conventional clinico-pathological parameters.

Materials and methods: Breast cancer tissues (n = | I5) and normal background tissues (n = 31) were collected
immediately after excision during surgery. Following RNA extraction, reverse transcription was carried out and
transcript levels were determined using real-time quantitative PCR and normalized against -actin expression.
Transcript levels within the breast cancer specimens were compared to the normal background tissues and
analyzed against TNM stage, nodal involvement, tumour grade and clinical outcome over a 10 year follow-up
period.

Results: The levels of SATBI were higher in malignant compared with normal breast tissue (p = 0.0167). SATBI
expression increased with increasing TNM stage (TNMI vs. TNM2 p = 0.0264), increasing tumour grade (gradel
vs. grade 3 p =0.017; grade 2 vs. grade 3 p = 0.0437; grade | vs. grade 2&3 p = 0.021) and Nottingham Prognostic
Index (NPI) (NPI-1 vs. NPI-3 p = 0.0614; NPI-2 vs. NPI-3 p = 0.0495). Transcript levels were associated with
oestrogen receptor (ER) positivity (ER(-) vs. ER(+) p = 0.046). SABT | expression was also significantly correlated
with downstream regulated genes IL-4 and MAF-| (Pearson's correlation coefficient r = 0.21 and r = 0.162) and
SATB2 (r = 0.506). After a median follow up of 10 years, there was a trend for higher SATBI| expression to be
associated with shorter overall survival (OS). Higher levels of SATB2 were also found in malignant compared to
background tissue (p = 0.049). SATB2 expression increased with increasing tumour grade (grade | vs. grade 3 p
= 0.035). SATB2 was associated with ER positivity (ER(-) vs. ER(+) p = 0.0283) within ductal carcinomas. Higher
transcript levels showed a significant association with poorer OS (p = 0.0433).
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Conclusion: SATBI mRNA expression is significantly associated with poor prognostic parameters in breast
cancer, including increasing tumour grade, TNM stage and NPI. SATB2 mRNA expression is significantly
associated with increasing tumour grade and poorer OS. These results are consistent with the notion that SATBI
acts as a 'master genome organizer' in human breast carcinogenesis.

Introduction & Background

Our understanding of the mechanisms involved in gene
expression has so far exceeded our appreciation of their
complex and subtle regulation. Tissue specific transcrip-
tion is controlled by transcription factors, binding to
enhancers or promoters, activating or suppressing expres-
sion of genes. In addition to this, the packaging of DNA
into chromatin and its subsequent organization has sig-
nificant implications for the regulation of gene activity
[1]. The function of transcription factors therefore
includes both stimulation of RNA polymerase via interac-
tions with mediator complexes and regulation of chroma-
tin accessibility via recruitment of histone-modifying
enzymes or nucleosome-remodelling complexes [2,3].
Recent studies have demonstrated the importance of
higher-order chromatin architecture in the regulation of
gene expression [4,5]. The fundamental role of chromatin
remodelling in coordinating expression of multiple genes
has also been established [6-9]. Nuclear matrix attach-
ment regions (MARs) are AT-rich DNA sequences
involved with higher-order chromatin organization, long-
range enhancer function, extension of chromatin modifi-
cations and dynamic tethering of chromatin loops [10-
17]. MARs have been implicated in the regulation of gene
expression due to their proximity to transcriptionally
active DNA [18-23]. MARs form specific binding sites on
the minor grove of the AT-rich DNA for proteins that rec-
ognize structure, rather than specific sequence. Further-
more, binding is thought to be primarily to the sugar-
phosphate backbone without direct contact with specific
bases [24]. Hence, unlike classic transcription factors
which target individual genes, AT-rich DNA binding pro-
teins can have many potential binding sites on multiple
genes [25-28]. Several proteins have been identified that
bind to MARs, including the Special AT-rich Sequence-
Binding protein 1 (SATB1) [24].

SATBI1 acts as a cell-type specific genome organizer regu-
lating gene expression and coordinating cellular delinea-
tion in the haematopoietic lineage [29-31]. SATB1 is
critical for differentiation and is expressed at a high levels
in thymocytes [24], whereas expression is down-regulated
in mature T cells [20,29-33]. SATB1 ablation has been
associated with disregulation affecting multiple genes in
T-cells [20,32]. Critical genes involved in cell proliferation
such as c-myc are also directly regulated by SATB1, and in
SATB1-null thymocytes, c-myc cannot be induced in
response to mitogen stimulation [32]. Whilst SATB1 can

function as a transcriptional activator [30], repressor activ-
ity has been demonstrated for certain genes [32,34].
Involvement of SATB1 in other developmental and differ-
entiation pathways has also been demonstrated [35],
including the control of neuronal differentiation within
the developing CNS [36,37].

In addition to its emerging physiological role, SATB1
expression has recently been found to contribute to breast
cancer growth and metastasis. Han et al. [38] found that
of 24 breast epithelial cell lines examined, SATB1 mRNA
and protein expression was limited to those with meta-
static phenotype. RNA-interference-mediated knockdown
of SATB1 in aggressive cancer cells altered the expression
of >1,000 genes, effectively reversing tumourigenesis by
restoring breast-like acinar polarity, anchorage-dependent
growth, inhibition of cellular proliferation and invasive
capacity in vitro; and tumour growth and metastasis in
vivo. On the contrary, SATB1 expression in non-aggressive
cells induced the malignant phenotype and in vivo meta-
static competence. The authors demonstrate that SATB1
orchestrates epigenetic modifications at target loci, up-
regulating metastasis associated genes and down-regulat-
ing tumour suppressors. Expression in 28 primary breast
tumours was found to be greatest in all poorly differenti-
ated infiltrating ductal carcinomas with only low-level
expression in some moderately differentiated tumours
and complete absence in adjacent normal tissue [38].
Nuclear staining for SATB1 was also found to be of prog-
nostic significance in a cohort of 1,318 breast cancer cases.
Higher SATB1 expression levels were associated with
shorter overall survival (OS) times using Kaplan-Meier
analysis of 985 ductal carcinomas. Multivariate analysis
confirmed SATB1 to be an independent prognostic factor
for breast cancer [38]. Zheng et al. [39] have also found
SATB1 expression in aggressive rather than non-aggressive
breast cancer cells. Similarly, the introduction of SATB1
into non-metastatic cells led to the induction of invasive
tumors in mice; whereas SATB1 silencing returned cells to
their normal phenotype and prevented metastasis and
tumor growth. The research implicates SATB1 as a master
regulator of metastatic competence in breast cancer.

SATB?2 is a close homologue of SATB1, recently associated
with cleft palate and other craniofacial dysmorphologies
[40-42]. SATB2 is also a MAR-binding protein, encoding a
cell type-specific transcription factor involved in the tran-
scriptional regulation of large chromatin domains. It has
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been demonstrated to modulate immunoglobulin p gene
expression in pre-B cells [10]. SATB2 has also been impli-
cated as a developmental regulator of neuronal differenti-
ation. In contrast to SATB1, SATB2 expression has been
identified in both malignant and non-malignant cell lines
[38].

In this study, the expression profile of SATB1 and SATB2
is assessed in a cohort of women with breast cancer. In
addition the levels of downstream genes including Inter-
leukin 4 (IL-4), Interleukin 13 (IL-13) and MAF1 were
determined. Transcript levels were evaluated against
established pathological parameters and clinical outcome
over a 10 year follow-up period.

Materials and methods

Patients and samples

Institutional guidelines, including ethical approval and
informed consent, were followed. Breast cancer tissues (n
= 115) and normal background tissues (n = 31) were col-
lected immediately after excision during surgery and
stored at -80°C until use. A consultant pathologist exam-
ined haematoxylin and eosin stained frozen sections to
verify the presence of tumour cells in the collected sam-
ples. Normal tissue was derived from the background
breast parenchyma of breast cancer patients within the
study group. Medical notes and histology reports were
used to extract the clinico-pathological data (Table 1). A
customized database was established to record the data.

Table I: Clinical and pathological data.

Parameter Category Number
Node status Node positive 54
Node negative 73
Tumour grade | 24
2 43
3 58
Tumour type Ductal 98
Lobular 14
Medullary 2
Tubular 2
Mucinous 4
Others 7
TNM staging | 70
2 40
3 7
4 4
Outcome Disease free 90
Alive with metastasis 7
With local recurrence 5
Died of breast cancer 16
Died of unrelated disease 9

Note: missing values reflect discarded/uninterpretable values.

http://www.cancerci.com/content/9/1/18

Materials

RNA extraction kits and reverse transcription kits were
obtained from Sigma-Aldrich Ltd (Poole, Dorset, Eng-
land, UK). The PCR primers were designed using Beacon
Designer (Palo Alto, CA, USA) and synthesized by Sigma-
Aldrich. Custom made hot-start Master mix for quantita-
tive PCR was obtained from Abgene (Surrey, England,
UK) [43,44].

Tissue processing, RNA extraction and cDNA synthesis
Frozen sections of tissue were cut at a thickness of 5-10
mm and kept for routine histological analysis. An addi-
tional 15-20 sections were mixed and homogenized
using a hand-held homogenizer in ice-cold RNA extrac-
tion solution. The concentration of RNA was determined
using UV spectrophotometry. Reverse transcription was
carried out using a reverse transcription kit with an
anchored olig (dT) primer supplied by Abgene, using 1
mg of total RNA in a 96-well plate. The quality of cDNA
was verified using B-actin primers (Table 2).

Quantitative analysis

The level of SATB1 and SATB2 transcripts from the above
prepared DNA were determined using real-time quantita-
tive PCR based on the Amplifluor technology, modified
from a method reported previously [43,44]. In addition
the levels of IL-4, IL-13 and MAF1 were determined. The
PCR primers were designed using Beacon Designer soft-
ware, but to the reverse primer an additional sequence,
known as the Z sequence (5'-actgaacctgaccgtaca-3') which
is complementary to the universal Z probe (Intergen Inc.,
Oxford, UK) was added. The product expands one intron.
The primers used are detailed in Table 2. The reaction was
carried out using Hotstart Q-master mix (Abgene), 10
pmol of specific forward primer, 1 pmol reverse primer
which had the Z sequence, 10 pmol of FAM (fluorogenic
reporter dye, carboxyfluorescein) tagged probe (Intergen
Inc.), and cDNA from 50 ng of RNA. The reaction was car-
ried out using the IcyclerlQ (Bio-Rad Ltd, Hemel Hemp-
stead, England, UK), which is equipped with an optic unit
that allows real-time detection of 96 reactions, under the
following conditions: 94°C for 12 min and 50 cycles of
94°C for 15 sec, 55°C for 40 sec, and 72°C for 20 sec. The
levels of the transcript were generated from a standard
that was simultaneously amplified with the samples. The
levels of gene expression were then normalized against
the housekeeping gene B-actin, which was already quanti-
fied in these specimens, to correct for varying amounts of
epithelial tissue between samples [45]. The primers used
for B-actin are detailed in Table 2. With every PCR run, a
negative control without a template and a known cDNA
reference sample as a positive control, were included.

Statistical analysis
The Mann-Whitney U-test (comparison of median copy
number) and two-sample t-test (comparison of mean
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Table 2:
Primers for SATBI
AGGAAAACCGACAGAAGAC SATBI-F
ACTGAACCTGACCGTACACCCACGTCTTGTATGAAACT SATBI-Zr
Primers for SATB2
AGGAGTTTGGGAGATGGTAT SATB2-F
ACTGAACCTGACCGTACACCCAGAACACAATAGTCTGAA SATB2-Zr
Primers for IL-4
CACCTTACAGGAGATCATCAA IL4-F
ACTGAACCTGACCGTACAAGCAAAGATGTCTGTTACGG IL4-Zr
Primers for IL-13
ACTCTGTTCTTGGAAACCTG ILI3-F
ACTGAACCTGACCGTACACACACTGTAATGCATGATCC ILI3-Zr
Primers for MAF-1
ATTCTGGAGAGCGAGAAGT maf-F
ACTGAACCTGACCGTACAGCTTCTCGTATTTCTCCTTG maf-Zr

Primers fori-actin
ATGATATCGCCGCGCTCGTC
CGCTCGGTGAGGATCTTCA

copy number) were used for statistical analysis of absolute
and normalised gene copy number. The transcript levels
within the breast cancer specimens were compared to nor-
mal background tissues and analyzed against conven-
tional pathological parameters and clinical outcome over
a 10 year follow-up period. Within the tumour samples,
the correlation between SABT1 and downstream regulated
genes was examined using Pearson's correlation coeffi-
cient. In each case the true copy number was used for sta-
tistical analysis and hence the samples were not classified
as positive or negative. The statistical analysis was carried
out using Minitab version 14.1 (Minitab Ltd. Coventry,
England, U.K.) using a custom written macro (Stat
2005.mtw). For purposes of the Kaplan-Meier survival
analysis, the samples were divided arbitrarily into two
groups, 'high transcript level' or 'low transcript level', for
each gene. The cut-off was guided by the Nottingham
Prognostic Index (NPI) value, with which the value of the
moderate prognostic group was used as the dividing line
at the start of the test. Survival analysis was performed
using SPSS version 12.0.1 (SPSS Inc. Chicago, IL, USA).

Results

SATBI

The SATB1 expression profiles were determined both in
absolute terms and normalised against f-actin in order to
correct for varying amounts of epithelial tissue between
samples (Table 3). SATB1 was found to be expressed in
both normal/benign breast tissue and breast cancer speci-
mens. Significantly higher levels were found in the breast
cancer specimens compared to the background tissue
(absolute median copy number 24.49 vs. 7.02, p =
0.0167, normalized mean copy number 0.74 vs. 0.408, p
= 0.037). The expression of SATB1 mRNA was demon-
strated to increase with increasing Nottingham Prognostic
Index (NPI), NPI-1 vs. NPI-3 (absolute median copy
number 9.0 vs. 39.9, p = 0.0614); NPI-2 vs. NPI-3 (nor-
malized median copy number 0.095 vs. 0.432, p =
0.0495). The expression of SATB1 mRNA was also dem-
onstrated to increase with increasing TNM stage, TNM-1
vs. TNM-2 (absolute median copy number 15.0 vs. 53.1,
p = 0.0264, absolute mean copy number 65 vs. 148, p =
0.035) and increasing tumour grade, grade 1 vs. grade 3

Table 3: Summary of expression profiles for the overall cohort, followed by subgroup analysis for tumour specimens and benign

specimens.
Overall Tumour Benign
SATBI
Absolute 78.7 (0-976.1, 15.0) 88.6 (0-912.9, 24.5) 51.1 (0-976.1, 7.0)
Normalised 0.80 (0-23.49, 0.19) 0.74 (0-8.26, 0.20) 0.41 (0-1.49,0.22)
SATB2
Absolute 48.1 (0-2104.2, 0.0) 59.9(2104.2, 0.1) 9.84 (0-213.07, 0.0)
Normalised 0.12 (0-2.09, 0) 0.14 (0-2.09, 0) 0.05 (0-0.54, 0)

Values represent the true copy number of mRNA transcripts (absolute and normalised against i-actin) and are expressed as mean (range, median).
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(absolute mean copy number 45.6vs. 111, p=0.017, nor-
malized mean copy number 0.347 vs. 0.89, p = 0.038);
grade 2 vs. grade 3 (absolute median copy number 6.53
vs. 37.32, p = 0.0437); grade 1 vs. grade 2 and 3 (absolute
mean copy number 45.6 vs. 94, p = 0.021). In addition, a
significant association with ductal type was found, ductal
vs. mucinous (absolute mean copy number 95 vs. 20.9, p
= 0.0001, normalized mean copy number 0.77 vs. 0.331,
p = 0.017). Transcript levels were also significantly associ-
ated with oestrogen receptor (ER) positivity, ER(-) vs.
ER(+) (normalized mean copy number 0.94 vs. 0.456, p =
0.046). Within the tumour samples, we examined the cor-
relation between SABT1 and the downstream regulated
genes: 1L-4, IL-13 and MAF-1 using Pearson's correlation
coefficient. We observed a significant correlation between
SATB1 and IL-4 (r = 0.21), MAF-1 (r = 0.162) and SATB2
(r = 0.506). There was no correlation with IL-13 (r =
0.026).

After a median follow up of 10 years, there was a trend for
tumours with higher SATB1 expression levels to be associ-
ated with shorter OS times, although this did not reach
statistical significance. The disease free survival (DFS) and
OS curves for women with tumours which were classified
as having 'high levels' of SATBI transcript was not found
to differ significantly from that of their 'low level' counter-
parts, Figure 1a,b. The survival curves show higher levels
of SATB1 were of marginal benefit in predicting lower DFS
(p=0.174, NS).

SATB2

The SATB2 expression profiles were also determined both
in absolute terms and normalised against B-actin (Table
3). SATB2 was found to be expressed in both normal/
benign breast tissue and breast cancer specimens. Signifi-
cantly higher levels were found in the breast cancer speci-
mens compared to the background tissue (absolute mean
copy number 60 vs. 9.8, p = 0.065, normalized mean copy
number 0.138 vs. 0.053, p = 0.049). The expression of
SATB2 mRNA was also demonstrated to increase with
increasing tumour grade, grade 1 vs. grade 3 (normalized
mean copy number 0.0380 vs. 0.169, p = 0.035). In addi-
tion, a significant association with ductal type was found,
ductal vs. mucinous (absolute mean copy number 64 vs.
2.56, p =0.061, normalized mean copy number 0.158 vs.
0.004, p = 0.0007); ductal vs. medullary (absolute mean
copy number 64 vs. 0.0135, p = 0.050); ductal vs. others
(normalized mean copy number 0.158 vs. 0.045, p =
0.032). Within the ductal carcinoma subgroup, transcript
levels were also significantly associated with ER positivity,
ER(-) vs. ER(+) (absolute median copy number 0.0 vs.
10.0, p = 0.0283).

The DEFS curve for women with tumours which were clas-
sified as having 'high levels' of SATB2 transcript was not

http://www.cancerci.com/content/9/1/18

found to differ significantly from that of their 'low level'
counterparts, Figure 2a. Only a marginal benefit in pre-
dicting DFS was identified. However, tumours classified
as having higher transcript levels showed a statistically sig-
nificant association with a poorer OS (Figure 2b, p =
0.0433).

Discussion

In the study by Han et al. [38] SATB1 expression was
found to be greatest in all poorly differentiated infiltrating
ductal carcinomas with only low-level expression in some
moderately differentiated tumours and complete absence
in adjacent normal tissue. Expression was not found to be
restricted to late stage disease, but already present in a sub-
set of early primary tumours without lymph node metas-
tasis. SATB1 was found to be of high prognostic
significance, independent of the lymph node status and
nuclear staining was associated with shorter OS [38]. In
keeping with these results, we also found significantly
higher levels of SATB1 mRNA in the breast cancer speci-
mens compared to the background tissue and significant
association with poor prognostic parameters including,
increasing tumour grade, TNM stage and NPI. Although
we observed a trend for tumours with higher SATB1
mRNA expression levels to be associated with shorter OS
times, this failed to reach statistical significance. Similarly,
significantly higher levels of SATB2 mRNA were found in
the breast cancer specimens compared to the background
tissue and expression was significantly associated with
increasing tumour grade. In contrast to SATB1, tumours
classified as having higher transcript levels of SATB2 were
significantly associated with a poorer OS.

In-vitro and in-vivo studies have demonstrated that
SATB1 can induce the malignant and metastatic pheno-
type in breast cells, through widespread alteration of gene
expression profiles [38]. In particular, targeted up-regula-
tion has been demonstrated in poor prognosis genes asso-
ciated with proliferation, metastasis, angiogenesis,
degradation of the extra-cellular matrix and tumour inva-
sion, such as metastasin (S100A4), VEGFB, matrix metal-
loproteases 2, 3 and 9, TGFB1, endothelial growth factor
receptor and epidermal growth factor subfamily mem-
bers, including HER-2/NEU. Furthermore, specific down-
regulation of several tumour suppressor genes including
BRMS1, KAI1, NME1, and KISS1 has been reported [38].
In our study, correlation between SABT1 mRNA expres-
sion and the downstream regulated genes IL-4 and MAF-1
was identified. IL-4 has recently been implicated in the
resistance to cell death observed in epithelial tumours,
including breast cancer. IL-4 appears to function as an
autocrine survival factor by amplifying expression of anti-
apoptotic proteins and preventing therapy related cell
death. IL-4 blockade has been shown to decrease growth
rate and sensitize cells to chemotherapy [46]. MAF-1 has
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been demonstrated to be a key regulator of RNA polymer-
ase (pol) III which produces essential components of the
biosynthetic machinery and is therefore a key determinant
of cell growth and proliferation [47,48]. MAF-1 has also
been implicated in regulation of the transformation state
of cells [49]. Hence, expression of SATB1 could represent
a singular event with profound implications for tumouri-
genesis and metastasis in human breast cancer. This
would be consistent with the emerging interplay between
epigenetics, chromatin remodelling and cancer [50-52].
Tumourigenesis and metastasis represent key stages in the
development and progression of human cancer. Both are
multi-step processes where genetic alterations are associ-
ated with characteristic changes in phenotype. Acquisition
of metastatic competence is the prelude to widespread dis-
semination, resulting in the conversion of a local pathol-
ogy into a systemic disease with associated mortality.
[53,54]. How cells are initiated along a pathway to malig-
nancy and how malignant cells gain metastatic potential
is not well understood. Conventionally, cells are believed
to evolve through sequential and additive genetic changes
resulting in 'gain of function' and metastatic capacity.
However, breast carcinomas with known clinical out-
comes have recently been associated with characteristic
genetic profiles [55-58]. Hence, some cells within the pri-
mary tumour may already have the requisite gene expres-
sion pattern. The contemporary viewpoint is that such
expression profiles may be simultaneously acquired
through specific master changes in global genomic organ-
ization [38]. In keeping with this, SATB1 can bind to
numerous genomic sites, influencing chromatin organiza-
tion and orchestrating transcription of multiple genes.

The functional relevance of genomic organization, partic-
ularly towards transcription, requires the reconciliation of
two distinct paradigms, one suggesting that genomic
organization merely reflects nuclear processes including
transcription, and the other proposing that dynamic
genome organization plays a decisive role in its function
[59]. SATBI1 represents a novel class of transcription regu-
lator and has been frequently referred to as a genome
organiser. SATB1 appears to serve a dual purpose, structur-
ally as a component of chromatin architecture and func-
tionally as a transcription factor [38]. Chromatin
remodelling is emerging as an important effector mecha-
nism of epigenetic regulation. The role of SATB1 is there-
fore instrumental to the relationship between higher
order chromatin organization and global transcriptional
regulation [60]. SATB1 is a MAR binding protein involved
in targeting chromatin remodelling in a tissue-specific
manner at specific transcriptionally active chromosomal
sites. It interacts with AT-rich sequence motifs within core
unwinding elements that become unpaired under condi-
tions of torsional/superhelical stress. Such base-unpairing
regions (BURs) augment the potential for enhancers to act

http://www.cancerci.com/content/9/1/18

over large distances [10,24,28,36,37,61-64]. The protein
selectively tethers multiple genomic loci and is localized
to characteristic 'cage-like' three dimensional protein scaf-
fold that anchors loops of chromatin, forming a dynamic
chromatin 'loopscape’ [20,30,60,62]. By acting as a 'dock-
ing site' it recruits chromatin remodelling complexes and
regulates histone modifications and nucleosome posi-
tioning over long stretches of DNA [20,30,65,66].

The regulation of the activity of MAR-binding proteins
remains poorly understood. Post-translational modifica-
tion of SATB1 may provide a subtle refining mechanism
for regulation of chromatin architecture and gene tran-
scription [60]. In this way, SATB1 may act as repressor or
activator depending upon the physiological context
[18,19,30,67-69]. At an early stage of apoptosis, SATB1 is
irreversibly inactivated by caspase 6 cleavage, resulting in
rapid dissociation from chromatin and MARs [70]. SATB1
is also one of the few nuclear proteins harbouring the PDZ
protein-protein interaction domain, permitting interac-
tion with many nuclear proteins [20]. Intriguingly, SATB1
does not contain a classical nuclear localization signal and
a novel N-terminus sequence motif has been found to
mediate nuclear localization [29]. In contrast to SATB1,
SATB2 can be reversibly and dynamically modified by
SUMOylation (covalent conjugation of the small ubiqui-
tin-related modifier), which appears to modulate its activ-
ity as a transcription factor. SUMOylation is also involved
in targeting SATB2 to the nuclear periphery [10,71,72].
The structural similarity between SATB1 and SATB2
implies analogous roles in transcriptional regulation. Fur-
thermore, these proteins are highly conserved across spe-
cies [36,37,40,73]. Further studies are required to
determine the genome-wide targets of SATB1 and the
multitude of interacting factors recruited. Furthermore,
the process underlying tissue specificity of regulated genes
and the mechanisms of transcriptional up- or down-regu-
lation will need to be fully elucidated to optimise the
impact of any potential therapeutic manipulation strate-
gies [74]. Chromatin organizers are unlikely to be unique
to breast cancer pathogenesis and study of other human
cancers is warranted.

Limitations of the present study included the use of back-
ground parenchyma from breast cancer patients to pro-
vide 'normal tissue' for comparison. Ideally, such material
should be derived from patients without breast cancer in
order to avoid any 'field change' which may exist within
cancer bearing tissues. Although the sample size and fol-
low-up period were substantial, it is possible that a larger
cohort may have influenced several results which
approached, but failed to reach, statistical significance.
Finally, in addition to the measurement of mRNA tran-
script levels, quantitative analysis of protein expression
should be undertaken to ensure concordance.
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Conclusion

SATB1 mRNA expression is significantly associated with
poor prognostic parameters in breast cancer, including
increasing tumour grade, TNM stage and NPI. SATB2
mRNA expression is significantly associated with increas-
ing tumour grade and poorer overall survival. These
results are consistent with the notion that SATB1 acts as a
'master genome organizer' in human breast carcinogene-
sis. Further studies are required to elucidate their contri-
bution the development and progression of the malignant

phenotype.
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