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Abstract
Background Gliomas are aggressive brain tumors with poor prognosis. Understanding the tumor immune 
microenvironment (TIME) in gliomas is essential for developing effective immunotherapies. This study aimed to 
identify TIME-related biomarkers in glioma using bioinformatic analysis of RNA-seq data.

Methods In this study, we employed weighted gene co-expression network analysis (WGCNA) on bulk RNA-seq 
data to identify TIME-related genes. To identify prognostic genes, we performed univariate Cox regression and least 
absolute shrinkage and selection operator (LASSO) regression analyses. Based on these genes, we constructed 
a prognostic signature and delineated risk groups. To validate the prognostic signature, external validation was 
conducted.

Results CD8 + T cell infiltration was strongly correlated with glioma patient prognosis. We identified 115 CD8 + T 
cell-related genes through integrative analysis of bulk-seq data. CDCA5, KIF11, and KIF4A were found to be significant 
immune-related genes (IRGs) associated with overall survival in glioma patients and served as independent 
prognostic factors. We developed a prognostic nomogram that incorporated these genes, age, gender, and grade, 
providing a reliable tool for clinicians to predict patient survival probabilities. The nomogram’s predictions were 
supported by calibration plots, further validating its accuracy.

Conclusion In conclusion, our study identifies CD8 + T cell infiltration as a strong predictor of glioma patient 
outcomes and highlights the prognostic value of genes. The developed prognostic nomogram, incorporating these 
genes along with clinical factors, provides a reliable tool for predicting patient survival probabilities and has important 
implications for personalized treatment decisions in glioma.
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Introduction
Gliomas, the most prevalent type of brain tumor origi-
nating from glial cells, pose a significant burden on 
morbidity and mortality rates [1]. Among these tumors, 
glioblastoma (GBM) stands out as the most common 
primary malignant brain tumor, accounting for approxi-
mately 80% of all cases. Unfortunately, GBM is associated 
with a disappointing prognosis and poor quality of life, 
with a median overall survival (OS) of less than one year 
[2, 3]. Despite recent advancements in our understanding 
of glioma biology and the development of targeted thera-
pies through preclinical and clinical trials, the incidence 
of glioma recurrence, cognitive impairment, disabil-
ity, and mortality remains unacceptably high [4]. Most 
therapies that have shown a significant survival benefit 
in gliomas, such as radiation and chemotherapy, rely on 
non-specific targeting of proliferating cells. However, 
their curative effects are often compromised by glioma 
cell invasion and immune evasion [4–6]. Therefore, it is 
crucial to uncover unknown factors and further investi-
gate the known factors that contribute to the formation 
of the tumor microenvironment (TME). Understanding 
these factors helps promote glioma progression, iden-
tify malignant transformation mechanisms, and develop 
strategies to overcome drug resistance. Ultimately, this 
knowledge will enhance the diagnosis and enable person-
alized treatment approaches for gliomas.

TME plays a crucial role in the development and 
progression of cancer [7, 8]. It encompasses various 
components, including the extracellular matrix, non-
transformed cells like fibroblasts and immune cells, as 
well as the vascular network recruited from neighbor-
ing tissues [9]. Within the TME, immune-related genes 
(IRGs) are known to exert a significant influence on 
tumor development, invasion, metastasis, and drug resis-
tance [10–12]. This complex interplay is mediated by 
factors such as matrix, cytokines, and growth factors, 
ultimately impacting the efficacy of tumor treatment [13, 
14]. The extracellular matrix provides structural support 
to the tumor and facilitates cell signaling, migration, and 
invasion [15, 16]. It acts as a reservoir for growth factors 
and cytokines, which can promote tumor cell prolifera-
tion and survival [17, 18]. Additionally, fibroblasts within 
the TME can undergo activation, leading to the secre-
tion of various factors that contribute to tumor growth 
and invasion [19, 20]. The immune infiltrates present in 
the TME, including immune cells like T cells, B cells, 
and macrophages, have a dual role [21, 22]. On the one 
hand, they can mount an antitumor immune response, 
aiming to eliminate cancer cells [23]. On the other hand, 
tumor cells can manipulate the immune response to 
their advantage, leading to immune evasion and progres-
sion of the disease [24]. This intricate interplay between 
tumor cells and immune cells within the TME is a key 

determinant of tumor behavior and response to therapy. 
Furthermore, the TME is characterized by an altered 
vascular network, which is crucial for tumor growth and 
metastasis [25, 26]. Tumor cells can induce angiogen-
esis, the formation of new blood vessels, to ensure a suf-
ficient supply of nutrients and oxygen for their survival 
and proliferation [27, 28]. However, this abnormal vascu-
lature can also contribute to increased interstitial pres-
sure within the tumor, limiting drug delivery and efficacy 
[29]. Understanding the complexity of the TME and its 
influence on tumor development and treatment response 
is essential for the development of effective therapeutic 
strategies. Targeting specific components or signaling 
pathways within the TME holds promise for improving 
treatment outcomes and overcoming drug resistance in 
cancer patients.

Compared with normal brain tissue, which typically 
exhibits a low-to-medium immune state, the tumor 
immune microenvironment (TIME) plays a crucial role 
in glioma progression and treatment resistance [30, 31]. 
A suppressive TIME can significantly impair the effec-
tiveness of GBM treatment [32]. However, recent studies 
have shown that remodeling TIME using a brain-targeted 
liposomal honokiol and disulfiram/copper codelivery 
system can trigger tumor cell autophagy and promote 
immunogenic cell death [32]. This is accompanied by the 
activation of tumor-infiltrating macrophages and den-
dritic cells, as well as primed T and NK cells, leading to 
the formation of antitumor immunity and tumor regres-
sion [32]. Furthermore, a group of IRGs has been identi-
fied, which can be classified into low-risk and high-risk 
groups [33–35]. This suggests that IRGs play differen-
tial and complex roles in the development, progression, 
and metastasis of gliomas. Understanding the function 
of these genes within the context of TIME is critical for 
developing effective treatment strategies. Thus, the iden-
tification and characterization of IRGs within the TIME 
can provide valuable insights into the development of 
effective treatment strategies for gliomas.

In this study, we conducted a comprehensive analy-
sis of the TIME in glioma patients and identified 7 IRGs 
that play a crucial role in glioma development and pro-
gression. Among these IRGs, three hub genes, namely, 
CDCA5, KIF11, and KIF4A, were identified as poten-
tial independent clinical indicators for glioma patients. 
Our integrated analysis of these IRGs provides valuable 
insights into the development of more effective anti-
tumor immunotherapies for gliomas. These findings 
contribute to a deeper understanding of the complex 
interplay between the immune system and glioma pro-
gression and may pave the way for the development and 
implementation of novel treatment strategies targeting 
these specific IRGs.
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Materials and methods
Data collection and procession
The research design is illustrated in the flowchart (Fig. 1). 
The process of collecting and organizing the data was a 
crucial aspect of this study. We accessed the required data 
from publicly available sources, specifically the TCGA 
database (http://cancergenome.nih.gov/abouttcga) and 
GlioVis database (http://gliovis.bioinfo.cnio.es/). These 
databases provided us with level 3 RNA-seq data, which 
had been normalized using TPM (transcripts per mil-
lion) and included expression matrices. Additionally, the 
database contained clinical and follow-up information of 
patients with gliomas. Our focus was on a subset of the 
TCGA- low-grade glioma (LGG)/GBM samples, total-
ing 663 samples. These samples were utilized for con-
structing prognostic risk signature models and analyzing 
prognostic gene expression signatures. To validate the 
reliability of our risk signature model, we also utilized 
two separate datasets, namely, the REMBRANDT dataset 
(consisting of 444 samples) and the GRAVENDEEL data-
set (consisting of 276 samples), both obtained from the 
GlioVis database.

Tumor immune microenvironment landscape
To further investigate the immune landscape in gliomas, 
we employed the TIMER algorithm [36]. This algorithm 
allowed us to quantify the composition of six immune cell 
types (including CD4 + T cells, CD8 + T cells, neutrophil 

cells, myeloid dendritic cells, macrophages and B cells) 
in the glioma samples, providing detailed information 
about the immune cell infiltrates. We utilized the estima-
tion of STromal and immune cells in MAlignant Tumor 
tissues using Expression data (ESTIMATE) algorithm, 
implemented through the R package “ESTIMATE” [37], 
to assess the infiltration of stromal and immune cells as 
well as tumor purity based on the gene expression profile 
in the TCGA cohorts. The ESTIMATE algorithm calcu-
lates several scores that provide insights into the immune 
microenvironment. These scores include the immune 
score, which reflects the abundance of tumor-infiltrating 
immune cells, and the stromal score, which reflects the 
abundance of stromal cells. Additionally, the estimated 
score indicates tumor purity, while the tumor purity 
score shows its level. These scores help us understand 
the composition and characteristics of the tumor micro-
environment. In addition to assessing the immune cell 
composition, we collected 25 immune cell death (ICD) 
modulators, such as ANXA1 and IFNB1, and 47 immune 
checkpoints (ICPs), including CTLA4 and PD-L1, from 
a previous study [38]. We examined the association of 
these ICD modulators and ICPs with risk scores, provid-
ing insights into their potential roles in glioma develop-
ment and progression. By utilizing these algorithms and 
collecting additional immune-related factors, we were 
able to comprehensively analyze the immune landscape 
and investigate the potential implications of immune cell 

Fig. 1 Flowchart illustrating the study design
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infiltrates, ICD modulators, and ICPs in gliomas. This 
information enhances our understanding of the immune 
response in gliomas and may have implications for the 
development of immune-based therapies.

Kaplan-Meier survival analysis
In this study, we utilized the R packages “survival” and 
“survminer” (https://www.bioconductor.org/) to per-
form Kaplan-Meier survival analyses with log-rank tests. 
Our aim was to investigate the overall survival (OS) of 
patients with gliomas based on immune cells and identi-
fied genes. We generated Kaplan-Meier curves, p-values, 
and hazard ratios (HR) with 95% confidence intervals 
(CI) through log-rank test and univariate Cox propor-
tional hazards regression. Additionally, we utilized the 
R package “forestplot” (https://www.bioconductor.org/) 
to create a forest plot, which displayed the p values and 
HR with 95% CI of the identified genes. These statistical 
analyses allowed us to assess the prognostic value of the 
identified genes, providing valuable insights into the sur-
vival outcomes of patients with gliomas.

Identification of immune-related genes
To identify IRGs, we employed the R package “WGCNA” 
[39] to construct co-expression networks of genes and 
identify co-expressed gene modules that are closely 
associated with TIMER scores. To construct the co-
expression network, we performed Pearson’s correlation 
analysis to establish a gene similarity matrix. To enhance 
this matrix into a scale-free co-expression network, we 
applied an appropriate soft threshold power (β). This 
power value strengthens the connections between genes 
in the network. Next, we converted the gene similar-
ity matrix into a topological overlap matrix (TOM). The 
TOM allows us to measure the connectivity between 
genes in the network. A higher TOM value indicates a 
stronger connectivity between genes. Finally, we assigned 
genes with strong correlations to the same module. We 
utilized the R package “Limma” to perform differential 
expression analysis to obtain differentially expressed 
genes (DEGs) and identified the intersections between 
these genes and strong immune-correlated gene mod-
ules, identified as IRGs [40]. Through this approach, we 
were able to identify genes that are closely associated 
with the immune response and have potential implica-
tions in the context of immune-related diseases or thera-
pies. This information enhances our understanding of 
the immune system and provides valuable insights into 
the molecular mechanisms underlying immune-related 
processes.

Functional enrichment analysis
To gain a deeper understanding of the functional impli-
cations of the genes identified in our study, we employed 

the R package “clusterProfiler” [41]. This powerful tool 
allowed us to conduct Gene Ontology (GO) terms and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses. The GO term analysis pro-
vided us with valuable information about the biological 
processes, molecular functions, and cellular components 
associated with the identified genes. This allowed us to 
gain insights into the specific roles and functions of these 
genes in glioma biology. Meanwhile, the KEGG pathway 
analysis helped us understand the potential involvement 
of these genes in various signaling and biological path-
ways, providing a more comprehensive understanding of 
their functional implications. To ensure the significance 
of our enrichment results, we employed a strict cutoff 
criterion of FDR (false discovery rate) < 0.05. This enabled 
us to identify only the most relevant and statistically sig-
nificant GO terms and KEGG pathways associated with 
the identified genes. By performing these enrichment 
analyses, we were able to uncover the functional implica-
tions and potential biological roles of the identified genes 
in gliomas.

Development and validation of prognostic risk signature 
model
Based on STRING database (STRING: functional pro-
tein association networks (string-db.org)) and Cytoscape 
software V3.9.1, five algorithms (Degree, MNC, DMNC, 
EPC, and MCC) from the cytoHubba plug-in were uti-
lized in Cytoscape software to identify hub IRGs. The 
Absolute Shrinkage and Selection Operator (LASSO) is 
a regularization and dimension reduction method com-
monly used in biomarker screening for survival analy-
sis, particularly when combined with the Cox regression 
model [42]. In our study, we employed the R package 
“Glmnet” [43] to perform LASSO-Cox regression analy-
sis, utilizing 10-fold cross-validation and 1000 bootstrap 
samples to mitigate overfitting. The goal of this analysis 
was to identify Immune-Related Genes (IRGs) that are 
associated with prognosis and establish a prognostic risk 
signature model. Through feature selection, we removed 
potential overfitting and selected the most relevant IRGs 
for the model. The medium risk score was used as a cri-
terion to classify patients into high-risk and low-risk 
groups. To assess the survival difference between these 
groups, we performed Kaplan-Meier survival analysis 
with a log-rank test. To evaluate the predictive accu-
racy of the risk score, we conducted time-dependent 
receiver operating characteristic (ROC) analysis using 
the R package “survivalROC” (https://www.bioconduc-
tor.org/). Additionally, we aimed to identify and validate 
independent clinical prognostic factors. To achieve this, 
we performed univariate and multivariate Cox regression 
analysis. We also constructed a nomogram for progno-
sis prediction using the “rms” R package (https://www.

https://www.bioconductor.org/
https://www.bioconductor.org/
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https://www.bioconductor.org/
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bioconductor.org/). Age, sex, and tumor grade were 
included as variables in the nomogram. Furthermore, 
we validated the efficacy of the prognostic risk signature 
model by calculating the risk score for patients with glio-
mas from the REMBRANDT dataset and GRAVENDEEL 
dataset, following the same methodology as described 
above. By employing these analytical approaches and 
validation steps, we aimed to establish a robust prog-
nostic risk signature model that can accurately predict 
patient outcomes in gliomas. This model incorporates 
relevant clinical factors and IRGs, providing valuable 
insights for personalized treatment strategies and clinical 
decision-making.

Prediction of immunotherapy responsiveness
We utilized the Tumor Immune Dysfunction and Exclu-
sion (TIDE) algorithm [44] to predict the potential 
response to immune checkpoint blockade (ICB) therapy. 
This algorithm leverages the tumor transcriptomic profile 
from the TCGA cohort to assess the likelihood of a favor-
able response to ICB. The TIDE algorithm is based on the 
integration of expression signatures related to T cell dys-
function and T cell exclusion. By incorporating these sig-
natures, it can effectively model tumor immune evasion 
and evaluate the interaction with the level of cytotoxic 
T lymphocyte infiltration. This enables the algorithm to 
predict patient survival and response to immunotherapy. 
The TIDE score serves as an indicator of the efficacy of 
ICB treatment. A higher TIDE score suggests a poorer 
response to ICB, leading to shorter survival times for 
patients. Essentially, the TIDE algorithm provides valu-
able insights into the potential curative effect of ICB 
therapy and helps identify patients who may benefit the 
most from this treatment approach. By employing the 
TIDE algorithm in our study, we were able to assess the 
likelihood of a positive response to ICB therapy based on 
the tumor’s transcriptomic profile. This information can 
guide clinical decision-making and contribute to person-
alized treatment strategies for patients with gliomas.

Sample collection
In this study, glioma samples comprising various grades 
(WHO grades II-IV) were collected from tumor patients, 
whereas nontumor specimens were collected from 
patients undergoing decompressive craniectomy for trau-
matic intracerebral hemorrhage. Both were approved by 
the Ethics Committee. The samples were sourced from 
Guangdong Provincial Peoples’ Hospital.

Each sample was divided into two portions, one for 
Western Blotting and the other for immunohistochem-
istry (IHC). Basic patient information including gen-
der, age, tumor location, and pathological diagnosis was 
recorded.

Western blotting
The protein levels of CDCA5, Eg5, and KIF4A were 
assessed using standard Western blot analysis. The pri-
mary antibodies applied were anti-CDCA5 (1:100; Cat# 
67418-1-Ig; Proteintech), anti-Eg5 (1:100; Cat# 23333-
1-AP; Proteintech) and anti-KIF4A (1:100; Cat# 14344-
1-AP; Proteintech). Detection was performed using 
the ECL chemiluminescence system, and target protein 
bands were analyzed using Image J software V1.53e to 
determine relative density.

Immunohistochemistry
Fresh glioma specimens were fixed in 10% neutral for-
malin and subsequently embedded in paraffin. Sections 
of 4–5 μm thickness were then dewaxed and rehydrated. 
Antigen retrieval was accomplished using a citrate buf-
fer under high temperature and pressure. To block 
endogenous peroxidase activity, 3% hydrogen perox-
ide was applied. The paraffin-embedded sections were 
then incubated overnight at 4  °C with primary antibod-
ies for CDCA5 (1:100; Cat# 67418-1-Ig; Proteintech), 
Eg5 (1:100; Cat# 23333-1-AP; Proteintech), and KIF4A 
(1:100; Cat# 14344-1-AP; Proteintech). The following 
day, sections were treated with HRP-conjugated second-
ary antibodies, developed using DAB as the chromogen, 
and counterstained with hematoxylin. The stained sec-
tions were examined under a microscope, photographed, 
and the positive cells along with staining intensity were 
quantified using Image J software V1.53e.

Statistical analysis
A significance level of p < 0.05 was used to determine 
statistical significance. All statistical analyses were con-
ducted using R version 4.0.2.

Results
The infiltration of CD8 + T cells showed a significant 
association with the prognosis of glioma patients
To investigate the TIME in patients with gliomas, we 
employed the TIMER algorithm to accurately quantify 
the abundance of six distinct immune cell populations 
within the TCGA cohort. Our analysis revealed intrigu-
ing and distinct patterns of immune cell infiltration in 
LGG and GBM, as depicted in Fig.  2A-B. Intrigued by 
these findings, we sought to delve deeper into the rela-
tionship between immune cell infiltration and glioma 
prognosis. To accomplish this, we performed log-rank 
tests and univariate Cox proportional hazards regres-
sion analyses to evaluate the prognostic significance 
of the six immune cell types. The results were striking, 
showing a significant difference in survival outcomes 
between patients with high and low immune cell infil-
tration. Specifically, CD4 + T cells, CD8 + T cells, neu-
trophils, myeloid dendritic cells, and macrophages 

https://www.bioconductor.org/
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exhibited a strong association with glioma prognosis. It 
is worth noting that among the six immune cell types 
analyzed, CD8 + T cell infiltration was found to be the 
most strongly correlated with glioma patient prognosis. 
However, interestingly, as shown in Fig.  2C, B cells did 

not exhibit a significant impact on patient survival rates. 
These findings provide valuable insights into the intricate 
interplay between immune cells and glioma progression, 
shedding light on potential therapeutic targets and prog-
nostic indicators.

Fig. 2 The immune landscape in glioma and immune cell-related survival analysis. (A) Heatmap illustrating the expression scores of six immune cell 
types in LGG and GBM. The heatmap uses different colors to represent the expression trends observed in different samples (LGG: n = 510, GBM: n = 153). 
(B) Representation of the relative abundance of tumor-infiltrating immune cells in glioma, with each immune cell type depicted using distinct colors. (C) 
Survival analysis of various immune cell types using log-rank tests and univariate Cox proportional hazards regression

 



Page 7 of 20Lin et al. Cancer Cell International          (2024) 24:331 

Screening for IRGs associated with CD8 + T cell infiltration 
in gliomas using weighted gene co-expression network 
analysis (WGCNA)
As illustrated in Fig. 2C, the infiltration of CD8 + T cells 
demonstrated a noteworthy correlation with the prog-
nosis of glioma patients. Building upon this significant 
finding, a comprehensive analysis using WGCNA was 
performed to identify IRGs specifically associated with 

CD8 + T cell infiltration in gliomas. First, a thorough 
examination of the TCGA cohort revealed no outliers, 
as visually demonstrated in Fig.  3A. To determine the 
optimal soft threshold power, a meticulous analysis was 
conducted, ultimately selecting 10 as the most suitable 
power, as depicted in Fig. 2B and C. Subsequently, a com-
prehensive WGCNA was performed, leading to the iden-
tification of 15 distinct modules, as illustrated in Fig. 2D 

Fig. 3 Identification of the CD8 + T cell-related module using WGCNA screening. (A) Detection of outlier samples through sample clustering. (B-C) Evalu-
ation of the scale-free topology fit index and mean connectivity for different soft threshold powers (β). (D) Heatmap displaying the correlation between 
different modules. (E) Determination of the module-trait relationship in glioma patients, highlighting the turquoise module as the most relevant module 
associated with CD8 + T cells
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and E. To establish the association between these mod-
ules and CD8 + T cell infiltration, a correlation analysis 
was carried out. Interestingly, the turquoise module with 
807 genes exhibited the most significant correlation with 
high levels of infiltrating CD8 + T cells, with a correla-
tion coefficient of 0.48 and a p-value of less than 0.001, as 
showcased in Fig. 3E. This finding suggests that the genes 
within the turquoise module may play a crucial role in 
facilitating the infiltration of CD8 + T cells in gliomas. 
Further investigation into these genes could provide valu-
able insights into the underlying mechanisms of CD8 + T 
cell-mediated immune responses in glioma progression.

Screening of CD8 + T cell-related prognostic IRGs in 
gliomas
To comprehensively evaluate the prognostic significance 
of CD8 + T cell-related IRGs in gliomas, we first employed 
the R package “Limma” to conduct differential expression 
analysis. By intersecting the resulting 1273 differentially 
expressed genes (DEGs) with 807 CD8 + T cell-related 
IRGs, we identified a set of 115 candidate CD8 + T cell-
related IRGs, as displayed in Fig.  4A. To determine the 
prognostic value of these candidate IRGs, we performed 
log-rank tests and univariate Cox proportional hazards 
regression analysis. Intriguingly, the expression levels 

Fig. 4 Identification of immune-related genes (IRGs) associated with CD8 + T cells. (A) Screening for candidate genes associated with CD8 + T cells. (B) 
Evaluation of the prognostic significance of candidate CD8 + T cell-related IRGs using log-rank tests and univariate Cox proportional hazards regression
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of 110 out of the 115 candidate IRGs were found to be 
significantly correlated with survival prognosis. The for-
est plot further illustrated the top 20 CD8 + T cell-related 
prognostic IRGs in gliomas, as shown in Fig.  4B. These 
findings suggest that the identified CD8 + T cell-related 
IRGs may serve as potential prognostic biomarkers and 
therapeutic targets for glioma patients.

Functional enrichment analysis of candidate IRGs in 
gliomas
To understand the biological roles of the 110 candidate 
CD8 + T cell-related prognostic IRGs, we performed 
KEGG pathway enrichment analysis and examined three 
GO term categories: biological process, cellular compo-
nent, and molecular function. The KEGG analysis iden-
tified several significantly enriched pathways. KEGG 
pathway analysis identified significant enrichment in 
pathways such as the cell cycle, oocyte meiosis, p53 sig-
naling, and cellular senescence (Figure S1A). A chord dia-
gram illustrated the correlation between IRGs and these 
pathways (Figure S1B), while a lollipop plot depicted the 
KEGG pathway class distribution (Figure S1C).

In the GO term analysis, we identified several sig-
nificantly enriched terms. In the BP category, key terms 
included cell cycle, cell division, and nuclear divi-
sion, highlighting these IRGs’ roles in essential cellular 
processes (Figure S2A). In the CC category, enriched 
terms like chromosome, microtubule, cytoskeleton, 
and kinetochore indicated the localization and inter-
action of these IRGs within specific cellular structures 
(Figure S2B). Lastly, the MF category showed that car-
bohydrate derivative binding, nucleotide binding, and 
nucleoside phosphate binding were the most enriched 
terms, emphasizing the IRGs’ roles in molecular interac-
tions and binding (Figure S2C).

These pathway and GO term analyses offer insights 
into the biological roles of CD8 + T cell-related prognos-
tic IRGs in gliomas, indicating their involvement in key 
cellular processes, specific cellular structures, and molec-
ular interactions.

Construction and validation of a CD8 + T cell-related 
prognostic risk signature model
By utilizing the STRING database, we extracted protein-
protein interaction information for the 110 candidate 
IRGs. To identify hub IRGs, we employed five algorithms 
(Degree, MNC, DMNC, EPC, and MCC) from the cyto-
Hubba plug-in in Cytoscape software, which determined 
13 hub CD8 + T cell-related IRGs, as depicted in Fig. 5A. 
To further investigate the prognostic relevance of these 
13 IRGs in glioma patients, we employed LASSO-Cox 
regression with tenfold cross-validation. This approach 
allowed us to determine the optimal lambda value, which 
was obtained from the minimum partial likelihood 

deviance (Fig.  5B-C). Subsequently, we explored the 
7-gene signature model (including KIF11, RRM2, 
KIF20A, CDC20, CDCA5, PBK, and KIF4A) in three dif-
ferent cohorts: TCGA, REMBRANDT, and GRAVEND-
EEL (Fig. 6D-F, G-I, and J-L, respectively). Kaplan-Meier 
survival analysis of the 7-IRG signature revealed a sig-
nificant association between higher risk scores and worse 
survival in all three cohorts: TCGA, REMBRANDT, and 
GRAVENDEEL (Fig. 6E, H, and K, respectively). To eval-
uate the predictive efficiency of the risk score, we per-
formed ROC curve analysis using data from the TCGA 
cohort (Fig.  5F). Additionally, we validated the predic-
tive effect in the REMBRANDT and GRAVENDEEL 
cohorts (Fig.  6I and L, respectively). The results dem-
onstrated that the AUC ranged from 0.86 to 0.94 at the 
1-year stage, 0.74 to 0.89 at the 3-year stage, and 0.86 to 
0.95 at the 5-year stage in the TCGA cohort, indicating 
the reliable predictive ability of the 7-IRG risk score for 
glioma prognosis (Fig. 5F). Similarly, the REMBRANDT 
and GRAVENDEEL cohorts also confirmed the efficacy 
of the 7-IRG risk score as an indicator for glioma progno-
sis (Fig. 6I and L).

Utilizing the risk score derived from our prognostic 
signature, along with other clinicopathological indica-
tors of patients, we developed a nomogram that provides 
a comprehensive prediction of patient survival at 1-year, 
3-year, and 5-year intervals (Fig.  6A). This nomogram 
serves as a valuable tool for clinicians to assess the like-
lihood of patient survival based on multiple factors. To 
assess the performance of the nomogram, we conducted 
a calibration curve analysis. The results demonstrated 
the reliable performance of our nomogram in predicting 
patient survival (Fig. 6B). The calibration curve provides 
a visual representation of the agreement between the 
predicted survival probabilities and the actual observed 
survival rates. The close alignment between the predicted 
and observed outcomes further validates the accuracy 
and reliability of our nomogram. The incorporation of 
the risk score derived from our prognostic signature, 
along with other clinicopathological indicators, into the 
nomogram enhances its predictive power. By considering 
multiple factors simultaneously, clinicians can obtain a 
more comprehensive understanding of patient prognosis.

These findings highlight the potential of the 7-IRG 
risk signature as a prognostic indicator for gliomas. The 
robust association between higher risk scores and worse 
survival suggests the clinical relevance of these IRGs 
in predicting patient outcomes. The consistent results 
across multiple cohorts further validate the reliability and 
generalizability of the risk score. This information could 
potentially aid in personalized treatment strategies and 
improve patient management in glioma cases.
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The risk signature identified has important implications 
for immune cells, immune function, and the 
immunotherapeutic landscape
To evaluate the immune infiltration in different risk 
groups, we employed the ESTIMATE algorithm to assess 
the presence of stromal and immune cells, as well as 
tumor purity. The results of our analysis revealed that the 
high-risk group exhibited significantly higher immune 
scores, stromal scores, and estimated scores compared 

with the low-risk group (Fig.  7A). Conversely, the high-
risk group had lower tumor purity compared to the 
low-risk group (Fig. 7B). These findings suggest that the 
high-risk group is characterized by increased immune 
cell infiltration and stromal components, indicating a 
more active and dynamic immune microenvironment. 
Furthermore, our analysis included correlation stud-
ies between the risk signature and immune cell infiltra-
tion. The results revealed a positive correlation between 

Fig. 5 Identification of hub IRGs and development of a survival predictor model based on these hub IRGs. (A) Five algorithms (Degree, MNC, DMNC, 
EPC, and MCC) from the cytoHubba plug-in were utilized in Cytoscape software to identify hub IRGs. (B-C) absolute shrinkage and selection operator 
(LASSO) analysis performed on 13 hub IRGs. This analysis involved determining the log (Lambda) value for each of the 13 hub IRGs in the LASSO model 
and identifying the most appropriate log (Lambda) value. (D-F) Prognostic analysis of the 7-gene signature in the TCGA cohort. This analysis included 
the distribution of risk scores (D), Kaplan-Meier survival curve for overall survival (OS) in the high-risk and low-risk groups (E), and the 1, 3, and 5-year area 
under the curve (AUC) values obtained from time-dependent receiver operating characteristic (ROC) curve analysis to evaluate the prognostic perfor-
mance of the risk score for OS (F). (G-I) Prognostic validation of the 7-gene signature in the REMBRANDT cohort. (J-L) Prognostic validation of the 7-gene 
signature in the GRAVENDEEL cohort
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Fig. 6 Assessment of the independent prognostic value of the risk signature. (A) Nomograms developed for predicting the 1-year, 3-year, and 5-year 
survival probabilities of patient mortality based on the risk score and clinical variables, including age, gender, and grade. (B) The calibration curve analysis 
yielded results that confirmed the reliable performance of the nomogram
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the risk score and the presence of CD4 + T cells, CD8 + T 
cells, neutrophils, myeloid dendritic cells, and macro-
phages (Fig. 7C). However, there was no significant rela-
tionship observed between B cells and the risk score. 
These findings indicate that the risk signature is associ-
ated with increased infiltration of specific immune cell 
types, highlighting their potential role in the underly-
ing mechanisms of disease progression and response to 
treatment.

Considering the crucial role of ICD modulators and 
ICPs in cancer immunity and the effectiveness of mRNA 

vaccines, we proceeded to examine the expression lev-
els of 25 ICD modulators (Fig. 8A) and 47 ICPs (Fig. 8B) 
across different risk groups. Our analysis revealed sig-
nificant differences in gene expression between the two 
groups. Notably, many well-documented genes, such as 
CXCL10, IFNAR2, and TLR3 (ICD modulators), as well 
as CD160, CD44, and PDCD1 (ICPs), exhibited differen-
tial expression. These findings hold promise for the dis-
covery of novel targets for immunotherapy, potentially 
expanding the repertoire of therapeutic options available. 
Expanding our investigation into immunotherapy-related 

Fig. 7 Immune landscapes associated with the risk signature. (A-B) Comparison of the immune, stromal, and ESTIMATE scores (A) and tumor purity (B) 
between the high-risk and low-risk groups. (C) Spearman correlation analysis of the six immune cell scores with the risk score
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aspects, we assessed the TIDE scores in the high-risk 
and low-risk groups (Fig. 8C). Interestingly, we observed 
higher TIDE scores in the high-risk group compared 
to the low-risk group. This suggests that patients in the 
high-risk group may be more susceptible to immune eva-
sion mechanisms, potentially leading to reduced efficacy 
of immunotherapy. These findings underscore the impor-
tance of considering risk stratification when designing 
immunotherapeutic strategies and highlight the need for 
further research to enhance the effectiveness of immuno-
therapy in high-risk patients.

Prognostic value of 7 IRGs in gliomas
Following the identification of CD8 + T cell-related candi-
date IRGs and the construction of a prognostic signature, 
we conducted further analysis to examine the expression 

patterns of these signature genes in glioma. Our findings 
revealed that the RNA expression levels of KIF11, RRM2, 
KIF20A, CDC20, CDCA5, PBK, and KIF4A were signifi-
cantly upregulated in both tumor samples (Fig. 9A) and 
the high-risk group (Fig.  9B). This suggests that these 
genes may play a crucial role in the progression of gli-
oma, potentially serving as key regulators in the disease 
pathway.

To explore the relationship between the expression 
of the seven hub IRGs and OS in patients with gliomas 
from the TCGA cohort, we performed univariate and 
multivariate Cox regression analyses. These analyses con-
sidered the prognostic value of age, gender, and grade 
as covariates (Fig. 9C-D). The results demonstrated that 
the expression levels of three candidate IRGs, CDCA5, 
KIF11, and KIF4A, were significantly associated with 

Fig. 8 Comparison analysis of the risk signature of immunogenic cell death (ICD) modulators, immune checkpoint inhibitors (ICPs), and immune check-
point blockade (ICB) responses. (A, B) Comparison of ICD modulators (A) and ICPs (B) between the high-risk and low-risk groups. (C) TIDE scores of the 
high-risk and low-risk groups. Statistical significance was determined as follows: *P < 0.05, **P < 0.01, ***P < 0.001, ns (no significance). TIDE stands for 
Tumor Immune Dysfunction and Exclusion
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OS in glioma patients from the TCGA cohort (Fig.  9E). 
This suggests that CDCA5, KIF11, and KIF4A can serve 
as independent prognostic factors in gliomas, providing 
valuable insights into their potential as predictive bio-
markers for patient outcomes. To establish a clinically 
dependable predictive method for evaluating the survival 
probability of patient mortality at different time points, 
we developed a prognostic nomogram. This nomogram 
integrated the expression signature of CDCA5, KIF11, 
and KIF4A, along with age, gender, and grade (Fig.  9E). 
To assess the accuracy of the nomogram predictions, we 

established calibration plots based on the expression lev-
els of CDCA5, KIF11, and KIF4A. These plots evaluated 
the agreement between the predicted survival probabili-
ties and the observed 1-year, 3-year, and 5-year outcomes 
(Fig. 9F). The calibration plots demonstrated good agree-
ment, further validating the reliability and accuracy of 
the nomogram predictions.

Fig. 9 Prognostic significance of hub IRGs in gliomas. (A-B) Expression analysis of hub IRGs in normal and tumor tissues (A), and between high-risk and 
low-risk groups (B). (C-D) Univariate (C) and multivariate (D) Cox regression analyses of the seven hub IRGs in gliomas. (E) Nomograms developed for 
predicting the 1-year, 3-year, and 5-year survival probabilities of patient mortality based on the results of multivariate Cox regression and clinical variables. 
(F) Plots depicting the calibration of the nomograms based on hub IRGs in terms of the agreement between predicted and observed 1-year, 3-year, and 
5-year outcomes
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Expression of CDCA5, KIF11 and KIF4A expression using 
Western blotting and IHC
To further validate this hypothesis, we evaluated the 
protein expression levels of CDCA5, KIF11(also known 
as Eg5), and KIF4A in human glioma tissues as well as 
non-tumor brain tissues. Western blot analysis indicated 

significantly elevated expression of CDCA5, Eg5, and 
KIF4A in the glioma group compared to the non-tumor 
group, with P-values less than 0.01, 0.05, and 0.01, 
respectively (Fig. 10A). Additionally, immunohistochem-
istry was conducted to assess the expression of these pro-
teins, revealing higher positive areas for both CDCA5 

Fig. 10 Verifying the expression of CDCA5, Eg5 and KIF4A in nontumor tissue and glioma using western blotting (A) and IHC staining (B). Statistical 
significance was determined as follows: *P < 0.05, **P < 0.01, ***P < 0.001, ns (no significance)
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and Eg5 (P < 0.05 and 0.01) in glioma samples than that in 
non-tumor samples. However, the expression of KIF4A 
shows no difference in either glioma samples nor that in 
non-tumor samples (Fig.  10B). These findings highlight 
the differential expression of CDCA5, Eg5 in glioma tis-
sue, suggesting their potential as prognostic biomarkers 
for immunotherapy.

In conclusion, our study revealed the upregulation 
of several signature genes in glioma, suggesting their 
involvement in disease progression. The identification of 
CDCA5, KIF11, and KIF4A as independent prognostic 
factors highlights their potential as predictive biomark-
ers in gliomas. The development of a prognostic nomo-
gram incorporating these genes, along with age, gender, 
and grade, provides a clinically dependable method for 
predicting patient survival probabilities. The calibration 
plots further support the accuracy of the nomogram 
predictions, emphasizing its potential utility in clinical 
practice. These findings contribute to a better under-
standing of glioma prognosis and offer a valuable tool 
for personalized treatment decision-making and patient 
management.

Discussion
Glioma, a highly aggressive primary tumor of the cen-
tral nervous system that originates from neuroglia, poses 
significant challenges due to its poor prognosis and lack 
of effective treatment options [1, 45]. Despite these chal-
lenges, immunotherapy has emerged as a promising 
approach in the treatment of various types of tumors. 
The characterization of the TIME in gliomas is of utmost 
importance as it provides valuable insights into the tumor 
immune response and the factors that influence treat-
ment outcomes. By understanding the intricate interac-
tions between tumor cells and immune cells within the 
TIME, we can identify potential targets for immunother-
apy and develop personalized treatment strategies. How-
ever, developing immunotherapy specifically targeted at 
gliomas is particularly challenging due to the complex 
nature of the TIME. Understanding the characteristics 
of the TIME is crucial for designing successful antitu-
mor immunotherapies. In this study, we conducted an 
exploratory analysis to comprehensively characterize 
the TIME in gliomas. Our aim was to establish a clini-
cally dependable predictive method for evaluating the 
survival probability of patients with gliomas. To achieve 
this, we analyzed different glioma cohorts and validated 
our findings to ensure their plausibility and reliability. 
Our findings not only deepened our understanding of 
the characteristics of TIME in gliomas but also provided 
implications for personalized immunotherapy in patients 
with gliomas. By establishing a clinically dependable pre-
dictive method for evaluating patient survival probability, 

we can better inform treatment decisions and improve 
patient outcomes.

Our study aimed to investigate the impact of immune 
cell infiltration on the survival outcomes of patients 
with glioma. We observed a clear distinction in sur-
vival outcomes between patients with high and low lev-
els of immune cell infiltration. Among the six immune 
cell types analyzed, we found that CD8 + T cell infiltra-
tion exhibited the strongest correlation with glioma 
patient prognosis. The presence of CD8 + T cells within 
the tumor microenvironment has been associated with 
a favorable prognosis in various types of cancer. These 
immune cells play a crucial role in recognizing and elimi-
nating tumor cells, thereby exerting an antitumor effect. 
In the context of cancer, CD8 + T cells have been shown 
to infiltrate the tumor tissue and exert their cytotoxic 
activity against cancer cells. A recent study has identified 
immunological biomarkers that are clinically relevant 
and capable of distinguishing between different hypo-
functional states of tumor-associated CD8 + T cells [46]. 
The study utilized multiomics analysis to identify tumor 
niche-dependent exhausted and other types of hypofunc-
tional CD8 + T cell states in multiple patient cohorts and 
tumor types. The findings revealed that CD8 + T cells in 
“supportive” niches, such as melanoma or lung cancer, 
exhibited features of tumor reactivity-driven exhaus-
tion, while “nonsupportive” niches like glioblastoma were 
enriched for features of hypofunctionality that differed 
from canonical exhaustion. The study also highlighted 
the prevalence of dysfunctional CD4+: CD8 + T cell inter-
actions in glioblastoma and demonstrated that antipro-
grammed cell death protein 1 (PD-1) immunotherapy 
facilitated glioblastoma’s tolerogenic disparities, while 
DC vaccine partly corrected them. Overall, the study 
provides an atlas for evaluating different CD8 + T cell 
hypofunctional states in immunogenic versus nonimmu-
nogenic cancers. Our findings provide further evidence 
supporting the importance of immune cell infiltration, 
particularly CD8 + T cell infiltration, in determining the 
survival outcomes of glioma patients. This suggests that 
enhancing CD8 + T cell infiltration within the tumor 
microenvironment could potentially improve patient 
prognosis. These results have significant clinical implica-
tions, as they highlight the potential of immunotherapeu-
tic strategies aimed at boosting CD8 + T cell responses in 
glioma patients.

By intersecting the resulting 1273 DEGs with 807 
CD8 + T cell-related IRGs, we identified 115 candidate 
CD8 + T cell-related IRGs. Upon further investigation, 
we discovered that the expression levels of 110 out of 
the 115 candidate IRGs were significantly correlated 
with survival prognosis. To gain more insight into the 
functional roles of these 110 candidate CD8 + T cell-
related prognostic IRGs, we conducted a functional 
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enrichment analysis. The results showed that several 
KEGG pathways were highly enriched, including the cell 
cycle, oocyte meiosis, p53 signaling pathway, and cel-
lular senescence. In the BP category, terms such as cell 
cycle, cell division, and nuclear division were the most 
prominent. In the CC category, terms like chromosome, 
microtubule, cytoskeleton, and kinetochore were highly 
enriched. In the MF category, carbohydrate derivative 
binding, nucleotide binding, and nucleoside phosphate 
binding were among the most enriched terms. Among 
the enriched pathways and terms identified in our analy-
sis, it is worth noting that some, such as the p53 signal-
ing pathway [47–49], have been extensively studied and 
established as important players in glioma. The involve-
ment of these well-known pathways further supports 
the validity of our findings. On the other hand, there are 
pathways and terms, like oocyte meiosis, that have not 
been extensively explored in the context of glioma. These 
novel findings provide intriguing insights into potential 
mechanisms that may contribute to glioma development 
and progression. Further investigation into these less-
studied pathways could uncover new therapeutic targets 
or biomarkers for glioma. Overall, our findings provide 
valuable insights into the molecular mechanisms under-
lying gliomas. The identification of these 110 candidate 
CD8 + T cell-related prognostic IRGs highlights their cru-
cial roles in various cellular processes and pathways that 
are essential for cell proliferation, division, and survival. 
By understanding the involvement of these IRGs, we may 
gain a deeper understanding of the underlying molecu-
lar mechanisms driving gliomas. This knowledge could 
potentially pave the way for the development of novel 
therapeutic strategies aimed at targeting these specific 
pathways and improving the prognosis for patients with 
gliomas.

Following LASSO-Cox regression analysis, we identi-
fied 7 prognosis-related genes (KIF11, RRM2, KIF20A, 
CDC20, CDCA5, PBK, and KIF4A) for the construction 
of a prognostic signature in glioma. Among these genes, 
some have been extensively studied in the context of gli-
oma, while others have not received much attention. For 
instance, KIF11 has been reported to play a crucial role in 
promoting tumor stemness and drug resistance in TP53 
mutant glioma [50]. Studies have shown that upregula-
tion of KIF11 contributes to the aggressive behavior of 
glioma cells. Similarly, RRM2 has been implicated in gli-
oma progression, as its knockdown resulted in the upreg-
ulation of genes involved in apoptosis, proliferation, cell 
adhesion, and negative regulation of signaling pathways 
[51]. In the case of KIF20A, inhibition of this gene has 
been shown to induce significant apoptosis in glioma 
cells, suggesting its potential as a therapeutic target [52]. 
CDC20 overexpression has been linked to temozolo-
mide-resistant glioma cells with epithelial-mesenchymal 

transition, highlighting its involvement in drug resis-
tance mechanisms [53]. The role of PBK/TOPK in glioma 
has been investigated, demonstrating that targeting this 
gene can decrease the growth and survival of glioma 
initiating cells in vitro and attenuate tumor growth in 
vivo [54]. Additionally, KIF4A has been found to drive 
glioma growth by transcriptionally repressing Rac1/
Cdc42, leading to cytoskeletal remodeling in glioma cells 
[55]. However, limited research has been conducted on 
the involvement of CDCA5 in glioma progression. To 
the best of our knowledge, no reports have specifically 
addressed the role of CDCA5 in glioma. This highlights 
the need for further investigation into the potential con-
tribution of CDCA5 to glioma development and progres-
sion. In summary, our findings highlight the significance 
of these prognosis-related genes in glioma. While some 
genes have been extensively studied and their roles in 
glioma well established, others represent novel targets for 
future research.

Based 7-IRGs signature model, we assessed the pre-
dictive efficiency of the risk score and calculated the risk 
scores of patients based on our prognostic signature. 
We then divided the patients into high- and low-risk 
groups using the best cutoff values. Our results showed 
that patients in the high-risk group had a significantly 
worse prognosis than those in the low-risk group. The 
C-index, univariate analyses, multivariate analyses, and 
ROC curves all demonstrated that our signature could 
independently predict the prognosis of glioma patients 
and had a promising performance in the training set. 
We also validated the prognostic signature in the REM-
BRANDT and GRAVENDEEL cohorts, demonstrat-
ing its general applicability and validity. Based on the 
signature-related risk scores and clinicopathological 
indicators of patients, we constructed a nomogram to 
provide a comprehensive evaluation of patient progno-
sis from multiple aspects. In general, the high mortality 
rate and unfavorable prognosis of glioma in cancer sig-
nificantly impact both family and public health systems. 
In response to this challenge, researchers have increas-
ingly focused on developing diverse prognostic signa-
tures specifically tailored for glioma patients. Zhao et al. 
identified a neuregulin-related TIME that can be used to 
predict the prognosis of gliomas. Specifically, they found 
that neuregulin 3 was a potential independent biomarker 
for predicting prognosis in LGG, while neuregulin 1 
showed promise as an independent biomarker for GBM 
[56]. Lin et al. investigated the prognostic and immuno-
therapy-related biomarkers, as well as the TIME charac-
teristics, in LGG based on mutational profiling. Through 
univariate and multivariate Cox regression analyses, the 
CIC gene was identified as a potential biomarker, and 
a nomogram model was established to assess the prog-
nostic value of CIC in LGG [57]. Zhang et al. identified 
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fibroblast-related genes with prognostic significance 
and developed a novel risk signature that can assess the 
prognosis of glioma patients [58]. Zi et al. conducted a 
comprehensive bioinformatic analysis based on the gas-
dermin family, revealing the significant role of gasdermin 
family members in glioma. They constructed a prognos-
tic algorithm comprising four genes and identified the 
lncRNA/miR-296-5p/GSDMD regulatory axis as a key 
player in glioma progression [59]. These studies have 
made significant advancements in refining the prediction 
of prognosis for patients with glioma by considering vari-
ous perspectives. The models developed in these studies 
have demonstrated high efficacy in accurately predicting 
patient outcomes.

In addition to effectively predicting the prognosis of 
glioma patients, our prognostic signature also revealed 
associations between risk grouping and the immune 
landscape and response to immunotherapy. Our analysis 
showed that the high-risk group had significantly higher 
immune scores, stromal scores, and estimated scores 
compared with the low-risk group, while the high-risk 
group had lower tumor purity. We also observed a posi-
tive correlation between the risk score and the presence 
of CD4 + T cells, CD8 + T cells, neutrophils, myeloid 
dendritic cells, and macrophages, but no significant rela-
tionship with B cells. Furthermore, we observed differ-
ential expression of ICD modulators and ICPs in the two 
groups, and higher TIDE scores in the high-risk group 
compared to the low-risk group. These findings suggest 
that our prognostic signature may be useful in predicting 
the response to immunotherapy in glioma patients.

This study identified elevated expression levels of 
CDCA5, KIF11, and KIF4A in glioma samples from Chi-
nese patients. However, there are several limitations that 
must be considered. One primary limitation is the lack 
of elucidation regarding the regulatory mechanisms that 
govern the overexpression of these genes, which con-
strains our understanding of their roles in glioma patho-
genesis. Additionally, we failed to build up a prognostic 
model based on the IRGs due to our insufficient capacity 
and limited time. Furthermore, the study did not inves-
tigate the functional implications of the overexpression 
of these genes, leaving a gap in understanding their exact 
contributions to glioma development and progression.

Future research should aim to address these limitations 
through several approaches. First, detailed investigations 
into the regulatory mechanisms that lead to the overex-
pression of CDCA5, KIF11, and KIF4A are needed. This 
could involve exploring transcriptional, post-transcrip-
tional, and epigenetic factors that influence gene expres-
sion in gliomas. Second, build up a prognostics model 
according to the expression levels of identified IRGs. 
Third, functional studies are essential to determine the 
specific roles of these genes in glioma progression. This 

could include experiments such as gene knockdown 
or overexpression studies in glioma cell lines or animal 
models to observe the resultant phenotypic changes. 
Finally, exploring potential therapeutic interventions that 
target these genes could provide valuable insights into 
new treatment strategies for glioma, improving outcomes 
for patients across diverse populations.

In conclusion, our study shed light on the complex 
nature of the TIME in gliomas and provided valuable 
insights for the development of personalized immu-
notherapy approaches. By further understanding the 
characteristics of the TIME, we can optimize treatment 
strategies and improve the prognosis of patients with 
gliomas.
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