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Introduction
Numerous immune cell types are involved in the intri-
cate process of identifying and killing cancer cells, which 
is mainly dependent on the immune system. Researching 
on the immunological components of the tumor micro-
environment (TME) is crucial for both cancer immuno-
therapy and understanding the developmental paths of 
tumors [1, 2]. Since cancers originate from normal cells, 
it can be difficult for the immune system to identify and 
react to self-derived tumor cells [3]. Both innate and 
adaptive immune responses may be triggered by malig-
nant cellular change [4]. Since discovery of T helper (Th) 
17 cells in 2005 and after being thoroughly examined in 
the context of autoimmune disorders [5], Th17 cells are 
now understood to be a crucial cell type that promotes 
inflammation in a variety of pathophysiologic situations, 
including infections [6], autoimmunities [5], and can-
cer [7, 8]. These cells are a subset of CD4+ T cells which 
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Abstract
T helper (Th) 17 cells, a distinct subset of Th lymphocytes, are known for their prominent interleukin (IL)-17 
production and other pro-inflammatory cytokines. These cells exhibit remarkable plasticity, allowing them to 
exhibit different phenotypes in the cancer microenvironment. This adaptability enables Th17 cells to promote 
tumor progression by immunosuppressive activities and angiogenesis, but also mediate anti-tumor immune 
responses through employing immune cells in tumor setting or even by directly converting toward Th1 phenotype 
and producing interferon-gamma (IFN-γ). This dual role of Th17 cells in cancer makes it a double-edged sword 
in encountering cancer. In this review, we aim to elucidate the complexities of Th17 cell function in cancer by 
summarizing recent studies and, ultimately, to design novel therapeutic strategies, especially targeting Th17 cells in 
the tumor milieu, which could pave the way for more effective cancer treatments.
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produce interleukin (IL)-17 (also known as IL-17  A), 
IL-17  F, IL-21, granulocyte-macrophage colony-stimu-
lating factor (GM-CSF), and IL-22 [9]. Engagement of 
naive CD4+ T cells into the Th17 subset relies on vari-
ous cytokine cocktails including transforming growth 
factor beta (TGF-β), IL-6, IL-1β, or IL-21 [10]. IL-23 
has been demonstrated to preserve Th17 cells’ patho-
genic phenotype and survival, while not being necessary 
for their differentiation [11]. Upon steady state, Th17 
cells are located in lamina propria of the small intestine 
but can be induced in any other tissues (more precisely 
in mucosal and epithelial barriers) to fight extracellular 
bacteria, viruses, and fungi [12]. Their primary physi-
ological role of Th17 cells is to protect the host against 
extracellular pathogens at the mucosal surfaces [13]. The 
involvement of these factors extends to tissue inflamma-
tion and the development of several autoimmune condi-
tions, including multiple sclerosis, rheumatoid arthritis, 
psoriasis, and inflammatory bowel disease (IBD) [14]. 
Although Th1 and Th2 subsets are considered definitive 
and mutually exclusive lineages, it seems that Th17 and 
regulatory T cells (Tregs) subsets do not represent stable 
differentiation processes and retain plasticity allowing 
them to adapt to different environments [12]. Th17 pres-
ence in the TME has unveiled a complex dichotomy; on 
the one hand, Th17 cells have been shown to facilitate 
tumor growth by inducing angiogenesis and promoting 
the survival of cancer cells [15]. On the other hand, they 
have a role in tumor elimination by releasing interferon-
gamma (IFN-γ) and recruiting dendritic cells (DCs), 
CD8+ T cells, and natural killer (NK) cells to the tumor 
site [15]. This duality underscores the need for a deeper 
understanding of the factors that govern the behavior of 
Th17 cells in cancer. By summarizing the studies of previ-
ous scholars, we found that this high degree of plasticity 
is also imperative for the anti-tumor activity defined for 
Th17 cells in the development of autoimmunity because 
Th17 cells can even directly convert to the Th1 phenotype 
and produce IFN-γ to exert anti-tumor effects. To date, 
studies strongly indicate that Th17 cells influence the 
prognosis of cancer patients through their high plasticity 
and the secretion of inflammatory cytokines like IL-17. In 
this paper, we aim to explore the intriguing dichotomy of 
Th17 cells, examining the mechanisms behind their con-
flicting roles and discussing the potential implications of 
this cells in various cancers. By navigating through their 
immunosuppressive and anti-tumor activities, we seek to 
shed light on how these cells can be targeted or modu-
lated for improved cancer treatment outcomes.

Different th cell subsets in cancer immunity
The process by which naive CD4 + T cells differentiate 
into distinct subpopulations of helper T cells is contin-
gent upon the cytokines released by antigen presenting 

cells (APCs) and various precursor cells. These cytokines 
initiate a cascade of downstream signaling pathways that 
facilitate the initial activation, proliferation, and subse-
quent differentiation of naive T cells into specific effec-
tor cells [16]. Different T cell populations that have been 
characterized, are tightly involved in several cancers and 
inflammatory diseases [11]. In the tumor microenviron-
ment (TME), a diverse array of cytokines seems to facili-
tate the differentiation of naive CD4 + T cells into various 
functionally specialized T helper (Th) subsets [17]. Each 
of these subsets subsequently influences the immune 
system’s capacity to combat tumors in distinct ways [12]. 
Interestingly, these Th subsets demonstrate a remarkable 
degree of plasticity, indicating their ability to modify their 
functional roles from one type to another in response to 
environmental signals [13] (Fig. 1).

Th1
Research shows that Th1 cells are essential for promoting 
positive patient outcomes in different cancer types [18]. 
The cytokines IFN-γ and IL-12 are the main factors that 
stimulate the production of these powerful anti-tumor 
T cells [19]. IL-12 stimulates NK cells to produce IFN-γ, 
triggering the STAT1 and STAT4 signaling pathways in 
CD4+ T cells [19]. T-bet, also known as T-box expressed 
in T cells, is a crucial transcription factor that stimulates 
Th1 differentiation while inhibiting the growth of Th2 
and Th17 cells as a result of this coordinated activation 
[9, 20]. Moreover, the secretion of IFN-γ by these devel-
oping Th1 cells generates a positive feedback loop that 
enhances Th1 differentiation even more [21]. Th1 cells 
employ multiple anti-tumor mechanisms, including the 
inhibition of angiogenesis and metastasis, as well as the 
induction of programmed cell death, or apoptosis, in 
cancer cells. Additionally, interferon-gamma (IFN-γ) 
promotes the activation of M1 macrophages, disrupts 
the function of regulatory T cells (Tregs), and triggers 
tumor dormancy and senescence [22]. These results are 
corroborated by clinical observations, which show that 
increased Th1 cell levels in the TME are associated with 
a favorable prognosis in a number of cancers, including 
laryngeal carcinoma, ovarian cancer, breast cancer (BC), 
melanoma, glioblastoma, colorectal cancer (CRC), and 
non-small cell lung cancer (NSCLC) [23–28]. It’s cru-
cial to recognize that IFN-γ could have effects that vary 
depending on the situation. IFN-γ has been demon-
strated to promote tumor spread and immune evasion 
in chronic inflammation [22]. To completely understand 
the intricate interactions between Th1 cells and the TME, 
more investigation is required.

Th2
Th2 cells are essential in mediating type 2 immune 
responses, orchestrating the removal of pathogens, 
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allergens, and extracellular microorganisms [29]. In order 
to do this, they secrete a specific arsenal of cytokines, 
including IL-4, IL-5, IL-9, IL-13, and IL-25 [29]. These 
cytokines operate as important modulators of humoral 
immune responses which attract and stimulate immune 
effector cells, such as mast cells and eosinophils [30]. IL-4 
seems to be a key factor in Th2 differentiation. This cyto-
kine is released by a variety of cell types, including baso-
phils, NKT cells, and existingTh2 cells and stimulates the 
STAT6 signaling pathway in naive CD4+ T cells [31]. The 
transcription factor GATA3, the main regulator of Th2 
cell growth, is upregulated as a result of this activation [9, 

21]. Historically, it has been believed that Th2 responses 
accelerate the growth of tumors by inhibiting Th1-medi-
ated anti-tumor action and boosting angiogenesis. Nev-
ertheless, new data points to a more complex function 
for Th2 cells, with certain elements perhaps aiding in the 
eliminating tumors [32]. The existence of Th2 cells and 
their secreted cytokines are linked to a poor prognosis in 
a number of malignancies, including melanoma, gastric, 
ovarian, pancreatic, and cervical cancers [33–37]. While 
the precise mechanisms by which Th2 cells promote 
tumor growth are still under investigation, several key 
pathways have been identified. Tumor immune escape 

Fig. 1  Different Th cell subsets in cancer immunity. In the tumor microenvironment (TME), a wide range of cytokines appears to promote the differentia-
tion of naive CD4 + T cells into various specialized T helper (Th) subsets. Each of these subsets plays a unique role in modulating the immune system’s 
effectiveness against tumors. Furthermore, these Th subsets exhibit significant plasticity, reflecting their capacity to alter their functional characteristics in 
response to different environmental cues. Abbreviations: IL: interleukin, Th: T helper, Tfh: T follicular helper, TGF-β: transforming growth factor beta, TNF-α: 
tumor necrosis factor alpha, DCs: dendritic cells, Treg: regulatory T cell, CD40L: CD40 ligand
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appears to be significantly facilitated by Th2-associated 
cytokines [38]. Moreover, IL-10 can stimulate Tregs and 
inhibit DCs from presenting antigens, hence reducing 
the anti-tumor immune response [32]. Furthermore, IL-4 
potentially enhances the metastatic potential of cancer 
cells by altering the phenotype of tumor-associated mac-
rophages [39]. According to some publications, Th2 cells 
may have an anti-tumor effect in certain situations, such 
as chronic lymphocytic leukemia, BC, and Hodgkin lym-
phoma [40–42]. In these instances, a good prognosis for 
the patient was correlated with the presence of Th2 cells 
or their secreted cytokines. It has been demonstrated that 
IL-4 encourages eosinophil and macrophage infiltration 
into the TME [43]. Moreover, research conducted in vitro 
has shown that IL-4 might cause BC cells to undergo pro-
grammed cell death, or apoptosis [44].

Th9
Th9 was formerly thought to be a member of the Th2 
lineage but now it is identified as a separate population. 
An increasing amount of research focuses on the possi-
bilities of less-studied helper T cell populations in adap-
tive anti-tumor immunity, in addition to the well-known 
Th1 and Th2 subsets. The Th9 cell is one such subgroup; 
it was formerly thought to be a member of the Th2 lin-
eage but now it is identified as a separate population [45]. 
Th9 cells are CD4+ T lymphocytes that produce IL-9 in 
addition to IL-10 and IL-21 [46]. Although like Th2 cells, 
Th9 rely on IL-4 signaling via STAT6 for their differen-
tiation, but also TGF-β is a crucial cytokine [47]. Func-
tionally, Th9 cells support type 2 immune responses and 
work with Th2 cells to eradicate extracellular parasites 
and trigger allergic reactions [48]. Th9 cells have differ-
ent functions in hematological malignancies and solid 
tumors, and their effects on tumor formation are con-
text-dependent. Numerous researches indicate that Th9 
cells may have a pro-tumorigenic role in hematological 
malignancies [49]. Proposed mechanisms by which IL-9 
may facilitate tumor promotion involve the augmenta-
tion of lymphoma cell viability through the reduction 
of oxidative stress levels [50] and the activation of Treg-
mediated immunosuppression [51]. Clinically, aggressive 
lymphomas including Hodgkin’s lymphoma and large-
cell anaplastic lymphoma have been linked to increased 
IL-9 expression [52]. Additionally, compared to healthy 
controls, patients with nasal NK/T-cell lymphoma had 
higher tumor cell IL-9 mRNA levels [53]. Studies indicate 
that Th9 cells primarily function as anti-tumor cells in 
solid tumors, in contrast to hematological malignancies 
[54]. Notably, extensive evidence in melanoma indicates 
that Th9 cells induce strong anti-tumor responses which 
involve the recruitment of DCs to the tumor site and the 
subsequent differentiation of tumor-specific CD8+ T 
cells [55–58]. In a similar vein, Th9 cells in BC facilitate 

anti-tumor immunity by secreting IL-9 and IL-21 [59]. 
But in some solid tumors, Th9 cells seem to play a more 
intricate function. For example, Th9 cells in hepatocel-
lular carcinoma (HCC) have been shown to up-regulate 
CCL20, which has been involved in encouraging tumor 
growth [60]. Similarly, research on lung cancer indicates 
that Th9 cells may promote the migration and prolif-
eration of cancer cells, hence aiding in the formation of 
tumors [61].

Th17
Th17 cells, a subset of CD4+ helper T cells, have been 
linked to a number of inflammatory conditions and have 
been implicated in autoimmune diseases [8]. A particu-
lar cytokine profile, comprising IL-17  A, IL-17  F, IL-21, 
and IL-22, is produced by these cells [9]. Naive CD4+ T 
cell development into Th17 cells is regulated by a spe-
cific cytokine milieu, which is mostly composed of TGF-
β, IL-6, IL-1β, and IL-23 [8]. Furthermore, the Th17 cell 
transcriptional program is established by the master 
transcription factor RORγt, which is crucial [62].

A crucial element for the development of Th17 cells is 
HIF-1α; its deficiency leads to a reduction in the differ-
entiation of these cells [63]. The commitment of naïve T 
cells into the Th17 lineage necessitates the selective con-
trol of genes associated with glycolysis, in which HIF-1 
plays a crucial function in establishing the metabolic 
conditions necessary for Th17 development [64, 65]. This 
process seems to rely on mTORC1 downstream of the 
PI3K–Akt complex [63]. Additionally, it has been shown 
that mTORC1 exerts a positive control on the production 
of IL17 via many pathways, including STAT3, HIF-1α, 
and S6K2 [66].

A recent investigation has shown that humans’ diverse 
Th17 cell subgroups may be further classified into two 
primary groups according to the varying expression 
of chemokine receptors CCR4 and CXCR3: classical 
immunomodulatory Th17 and non-classical pro-inflam-
matory Th17. Classical Th17 is characterized by 
(CCR4+CXCR3−); they secrete large quantities of IL-17 
and a low amount of IFN-γ. However, non-classical Th17 
is identified by (CCR4−CXCR3+, also known as Th17.1 or 
Th1/Th17) secrete low amounts of IL-17 and high levels 
of IFN -γ, with a phenotype comparable to the Th1 [67].

The reported variations in Th17 cells’ functions within 
the TME are probably due to their phenotypic flexibility. 
Depending on the unique features of the tumor, Th17 
cells may show pro- or anti-tumor traits. This complex-
ity is further highlighted by the reciprocal and antagonis-
tic regulation of Th17 and Treg differentiation pathways 
[68]. Numerous studies has investigated the relation-
ship between the Th17/Treg ratio and patient outcomes 
in light of this interaction [69]. A disparity that benefits 
the Th17 or Treg populations may accelerate the growth 
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of tumors by inducing excessive inflammation or sup-
pressing the immune system’s ability to fight cancer, 
respectively [69]. Although a number of studies have 
found links between the Th17/Treg imbalance and vari-
ous patient outcomes, such as survival and cancer grade 
[69–73], however, the nature of this imbalance appears to 
be significantly influenced by the specific type of tumor 
involved [74]. Th17 cells have the ability to both promote 
and prevent tumor growth. For example, they can stimu-
late angiogenesis and increase the survival of cancer cells, 
which can aid in the formation of tumor [75]. On the 
other hand, by producing IFN-γ and attracting immune 
effector cells to the tumor site, such as DCs, CD8+ T 
cells, and NK cells, they can also assist in the tumor elim-
ination [15]. There is ample evidence that the relationship 
between Th17 cells and cancer is intricate and heavily 
context-dependent.

Th22
Th22 cells, recently discovered CD4+ Th subset, are dis-
tinguished by their production of IL-22, IL-13, and tumor 
necrosis factor alpha (TNF-α), but not IL-17, IFN-γ, or 
IL-4 [76]. Their differentiation from naive CD4+ T cells 
is driven by a specific cytokine milieu, including IL-6, 
IL-23, IL-1β, and TNF-α [76, 77]. A growing body of 
research indicates that Th22 cells may have a role in the 
development of tumors in a number of malignancies, 
including ovarian, gastric, lung, hepatocellular, and colon 
cancers [78–82]. The functional characteristics of IL-22, 
which have been demonstrated to suppress apoptosis, 
enhance tumor cell proliferation, angiogenesis, migra-
tion, the shift from epithelial to mesenchymal tissue, and 
metastasis, are most likely responsible for this connec-
tion [83–85]. It is important to notice that Th1 and Th17 
cells can also contribute in production of IL-22 that pres-
ent in the TME, meaning that Th22 cells are not the only 
ones that can produce IL-22 [86, 87].

T follicular helper (tfh) cells
Tfhs represent a distinct lineage of CD4+ Th cells, essen-
tial for the production of high-affinity antibody responses. 
They accomplish this by encouraging the growth of B 
cells and making immunoglobulin class switching easier 
[88]. IL-6 and IL-21 work together to drive Tfh cell dif-
ferentiation by inducing the production of the transcrip-
tion factor Bcl-6 and activating STAT3 signaling, which 
in turn polarizes the cells into Tfh effector cells [9, 88]. 
Tfh cells appear to have a context-dependent function in 
the genesis of cancer [89]. Circulating Tfh-like cells are 
associated with a poor prognosis in chronic lymphocytic 
leukemia, especially in later stages [89]. However, Tfh cell 
infiltration into the tumor is linked to a better prognosis 
and increased patient survival in non-lymphoid malig-
nancies such as colorectal, lung, and BCs [90–92]. This 

implies that Tfh cells may have an anti-tumoral function 
in solid cancers. The creation of ectopic lymphoid tissues 
inside the TME is the suggested mechanism for this anti-
tumor impact [93]. These organs function as centers for 
attracting more immune effector cells that are essential 
for the removal of tumors. Furthermore, Tfh cells may 
aid in the production of anti-tumor antibody responses 
by influencing B cell activity [93].

Tregs
About 10% of CD4+ T cells in healthy individuals are nat-
urally occurring Tregs, or nTreg cells [94]. These cells are 
characterized by the constitutive expression of the FoxP3 
transcription factor in the nucleus, along with CD25 and 
cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) 
surface markers, all of which are critical for their sup-
pressive function [95]. These cells are responsible in 
maintaining immunological self-tolerance [95]. However, 
they can also impede anti-tumor immunity and acceler-
ate the course of cancer by controlling immune surveil-
lance and suppressing effector T-cell responses [96], . In 
fact, poor survival outcomes and disease progression are 
correlated with higher nTreg levels in individuals with 
different malignancies [97]. Certain immunotherapies 
and targeted treatments may be less effective as a result 
of this immunosuppressive impact [98]. One mecha-
nism by which nTreg cells suppress anti-tumor immunity 
involves CTLA-4-dependent downregulation of CD80 
and CD86 expression on APCs [98]. This hinders the pre-
sentation of the tumor antigen and the consequent acti-
vation of tumor-specific T cells [98]. Interestingly, studies 
indicate that Treg cell-expressed programmed cell death 
protein 1 (PD-1) functions as a negative regulator of the 
suppressive activity of these cells [99]. Therefore, even 
though the goal of PD-1 blockade therapy is to revital-
ize fatigued CD8+ T cells, it’s possible that this treatment 
could unintentionally increase Treg cells’ suppressive 
function in the TME [99]. nTreg cells have the ability to 
secrete immunosuppressive cytokines such as TGF-β, 
IL-10, and IL-35, which can further impair anti-tumor 
immunity [100].

Th17 plasticity and cytokine profile in cancer
Unlike Th1 and Th2, Th17 cells are not a “fixed” subset. 
They can convert into other T helper types by the effect 
of the microenvironment, a phenomenon known as 
“Plasticity” [101]. Research indicates that Th1 and Th2 
cells are regarded as more phenotypically stable, whereas 
Th17 cells demonstrate a significant level of plasticity, 
enabling them to differentiate into various subtypes in 
response to particular stimuli or pathogenic environ-
ments [102, 103].

Given the great phenotypic flexibility of Th17 cells, it is 
not unexpected that the available data about Th17 cells’ 
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role in cancer is wildly contradictory and tumor-spe-
cific [68]. Th17 cells are more plastic compared to other 
T cells because of their capacity to adopt a variety of 
functional phenotypes and their intricate nature, which 
involves both cytokine-dependent and -independent 
actions [104]. A unique feature of RORγ as compared to 
T-bet or GATA3, is that its expression is not stabilized by 
positive feedback loops, making it extremely susceptible 
to variations in the environment [105]. These variations 
result in strong phenotypic plasticity at the cellular level. 
Notably, phenotypic shifts between Th17 cells and every 
other Th subtype have been documented [106]. One of 
the most significant subtypes of Th17 plasticity is Th17/
Th1. These cells show double-positive Th1/Th17 features, 
co-expressing cytokine receptors (IL-12Rβ2 and IL-23R) 
and distinctive transcription factors (RORγt and T-bet) 
[67]. Studies conducted in vitro demonstrate the impor-
tance of growth factors and cytokines in plasticity [107, 
108]. While adequate TGF-β promotes the maintenance 
of the Th17 phenotype, low or missing TGF-β with ade-
quate IL-12 and IL-23 cytokines appears to favor conver-
sion towards Th1 by activating STAT4 [107, 108]. The 
fact that Th17 plasticity is unidirectional is an important 
conclusion from earlier studies. It is easy for Th17 cells 
to become Th1-like cells, but not the other way around 
[102]. These Th17-derived Th1-like cells have a unique 
surface marker profile (CD161, CCR6, and IL-17RE) that 
allows them to be identified from traditional Th1 cells 
[62, 109]. Furthermore, they have a distinct cytokine pro-
file, co-expressing pro-inflammatory mediators such as 
IL-26, chemokine (C-C motif ) ligand 20 (CCL20), IFN-γ, 
GM-CSF, and IL-22 [12, 109]. Expression of these cyto-
kines depends on the secretion of IL‐6, TGF‐β, IL‐1β, 
IL‐12 and IL‐23 by APCs during differentiation or dur-
ing reactivation of already‐differentiated classical Th17 
cells [67]. Notably, it has been revealed that Th17/Th1 
differentiation can be stimulated by DCs expressing the 
notch ligand DLL4 through direct activation of T-bet 
and RORγt [110]. The discovery of Th17 cell infiltration 
via chemokine receptor interactions into a variety of 
tumor forms, such as B cell (non-hodgkin) cancer, BC, 
colon cancer, gastric cancer, hepatocellular cancer, mela-
noma, myeloma, ovarian cancer, pancreatic cancer, and 
so on, in recent research has revealed even another level 
of intricacy [7, 12, 111–113]. Furthermore, recent stud-
ies indicate that RORγt+ and T-bet+ cells within tumor-
infiltrating lymphocytes (TILs) may be in balance in a 
variety of malignancies, including ovarian and BC [114]. 
The differentiation pathways of Th17 and Treg CD4+ T 
cell subsets are quite similar. TGF-β alone drives Treg cell 
differentiation while it induces Th17 cell differentiation 
and inhibits Treg cell differentiation in the presence of 
other cytokines such as IL-6 or IL-21 [10]. As the con-
stitutive ratio of Tregs and Th17 cells is modified in the 

TME, human Th17 cells exhibit substantial developmen-
tal plasticity and differentiate into Treg cells, an immu-
nosuppressive subset infiltrating the TME [115]. Even in 
the presence of Th17-polarizing cytokines, Th17-derived 
Tregs avoid reverting back to the Th17 phenotype, sug-
gesting that this conversion is highly persistent [116]. Ye 
et al.‘s in vitro research provides strong support for this 
trans differentiation: first, they obtained a Th17 subpopu-
lation by stimulating TILs from ovarian and colon can-
cers with a CD3 monoclonal antibody as well as IL-2; and 
then, they used flow cytometry to detect the results after 
amplifying this subpopulation three times and found a 
significant increase in the FoxP3+ cell subtype with an 
obvious decrease in the IL-17+ cells, a TCR stimulation 
dependent differentiation [116]. It has been shown that 
Th17+FoxP3+ double-positive T cells exist in a variety 
of tumor environments. These cells are highly prevalent 
in the colitis microenvironment linked to colon cancer, 
according to Kryczek et al. In terms of function, these 
cells encouraged the production of inflammatory cyto-
kines in the colitis tissues while inhibiting T-cell activa-
tion [117]. Similar findings were reported in cases of 
esophageal cancer in humans [118]. Research on B-cell 
non-Hodgkin’s lymphoma indicates that cancerous B 
cells have the ability to upregulate FoxP3 expression and 
encourage the growth of Treg cells, which in turn inhib-
its Th17 differentiation and induce a suppressive TME 
[111]. Beyond Th17/Th1 and Th17/Treg plasticity, studies 
indicate that people with asthma have Th17/Th2 hybrid 
cells in their blood. These cells generate a mixed cyto-
kine profile consisting of IL-17, IL-22 (Th17), IL-4, IL-5, 
and IL-13 (Th2), and they co-express the transcription 
factors GATA3 and RORγt, which are indicative of both 
lineages [119]. It has also been demonstrated that Th17 
cells in peyer’s patches take on the Tfh phenotype [120]. 
Researchers have shown that Th17 cells within Peyer’s 
patches may dynamically change to Tfh cells (expressing 
Bcl6, CXCR5, PD-1, and IL-21) by the use of IL-17 fate 
reporter mice. This process promotes the formation of 
IgA-secreting germinal center B cells [120]. Figure 2 pro-
vides a schematic representation of the plasticity of Th17 
cells as they differentiate into other T cell phenotypes.

Th17 dual function in various human cancers
The impact of Th17 cells on cancer development is mul-
tifaceted, as they can either facilitate tumor progression 
or impede tumor growth, contingent on the individual 
characteristics of the tumor (Fig. 3). This section presents 
findings on the opposing roles of Th17 cells in BC, mela-
noma, lung cancer, CRC, and HCC.

BC
BC is a global problem due to its high mortality and 
prevalence, especially among women. Despite treatment 
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progress, no definitive cure for BC has been reported 
[1]. However, substantial research has been done to find 
effective treatments and identify BC progression mecha-
nisms and causes [121, 122]. BC spreads due to many 
reasons, including Th17 cells’ chemokines, cytokines, 
and inflammatory pathways [12]. Karpisheh et al. gath-
ered comprehensive evidence of the dual role of Th17 
in BC pathogenesis [123]. The dual roles of Th17 cells 
in BC, encompassing both tumor-promoting and anti-
tumor functions, are examined in this section. Regard-
ing the tumor-promoting characteristics of Th17 cells, 
a multitude of studies have indicated an increased pres-
ence of these cells in the tumor tissues and PBMCs of BC 
patients. Notably, Th17 cells exhibit heightened activity 
in individuals with advanced stages of the disease [124, 
125]. Du et al. found that breast tumor tissue expressed 
IL-17. By increasing tumor microvessel accumulation, 
IL-17 boosted angiogenesis, metastasis, tumor cell pro-
liferation and growth, and BC progression rate. In addi-
tion, they found that IL-17 injection into tumor-bearing 
animals greatly enhanced tumor progression, but in 

vitro exposure did not [126]. The findings of Chen and 
colleagues established a correlation between elevated 
levels of IL-17 secretory cells and a higher histologi-
cal grade in BC [127]. In another study, IL-22, a major 
Th17 cytokine, increased angiogenesis, proliferation, 
and tumorogenesis [128]. According to a different study 
on BC patients, IL-17 significantly increased the expres-
sion of the vascular endothelial growth factors (VEGF), 
CXCL8, matrix metalloproteinase (MMP)-2, and MMP-
9, promoting the growth of tumor cells. Tumor invasion 
and increased expression of IL-17 A were positively cor-
related with the quantity of Treg cells in invasive breast 
tumors [129]. Thibaudin et al. found that ectonucleotid-
ase-expressing CD25high Th17 cells grew rapidly in tumor 
tissue and suppressed CD8+ and CD4+ T cells by inhib-
iting and activating them, respectively. They suggested 
that these cells hindered the immune system’s anticancer 
responses [130]. Moreover, it was found that Th17 cells 
regulate CXCL1 expression throughout cancer growth. 
Evidence suggests that CXCL1 expression on tumor cells 
and its interaction with the CXCR2 receptor can activate 

Fig. 2  Th17 plasticity and cytokine profile in cancer. Th17 cells differentiate into various subtypes under the influence of different cytokines, exhibiting 
both anti-tumor and pro-tumor activities within the tumor microenvironment. Each subtype secretes distinct cytokines and chemokines that play a 
significant role in shaping the tumor response. Abbreviations: IL: interleukin, Th: T helper, TGF-β: transforming growth factor beta, IFN-γ: interferon-gamma, 
Treg: regulatory T cell, GM-CSF: granulocyte-macrophage colony-stimulating factor, CCL-20: C-C motif ligand 20, Tfh: T follicular helper, IL-17RE: IL-17 
receptor E, CCR: CC chemokine receptor
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the NF-κB/ AKT pathway, leading to metastasis, angio-
genesis, growth, and progression of BC [131]. Evidence 
shows that aggressive molecular subtypes TN, Luminal B, 
and HER2 have higher levels of IL-17 A than less aggres-
sive Luminal A. Also, it was demonstrated that Th17 
increased BC risk [132]. Scientists also indicated that IL-
17-producing neutrophils and γδ cells boosted BC cell 
invasion and metastasis. Breast tumor cells stimulated 
neutrophil polarization and proliferation, suppressing 
CD8+ T cells and increasing dissemination to adjacent 
organs [133]. IL-17  A also promoted cell growth and 
proliferation, according to Kim et al. [134]. Moreover, in 

vitro, recombinant IL-17 had minimal influence on can-
cer cell proliferation in mouse BC cells, while angiogen-
esis and tumor size increased in animals [126]. A study by 
Huang et al. found that Treg cells increased IL-17RB pro-
duction in BC cells by secreting TGF-β1 and activating 
the Smad2/4/3 signaling pathway in tumor-draining LNs 
(TDLNs), leading to cancer cell proliferation, angiogen-
esis, and metastasis [135]. Additionally, IL-17E has been 
shown to generate anti-tumor responses in vitro and in 
vivo. IL-17E’s anti-tumor effect was linked to increased 
peripheral blood eosinophils and IL-5 levels in tumor-
bearing animals [136]. In contrast, Jiang et al. found 

Fig. 3  Th17 dual function in various human cancers. The TH17 cell subset can promote tumor progression through the secretion of cytokines such as 
IL-17 A and IL-22, which facilitate tumor cell proliferation, angiogenesis, metastasis, differentiation into Treg cells, and the recruitment of myeloid-derived 
suppressor cells (MDSCs), thereby exerting pro-tumor effects. Conversely, this cell lineage can also inhibit metastasis, angiogenesis, and tumor-associated 
macrophages (TAMs) through the release of cytokines including IL-1, IL-6, IL-17 A, and IL-17 F. Additionally, it can stimulate the recruitment and activity 
of cytotoxic T lymphocytes (CTLs), TH1 cells, dendritic cells (DCs), natural killer (NK) cells, and neutrophils, resulting in anti-tumor effects. Abbreviations: 
IL: interleukin, DCs: dendritic cells, IL-17R: IL-17 receptor, PD-L1: programmed cell death ligand 1, TAMs: tumor associated macrophages, Th: T helper, NK 
cell: natural killer cell, MMP: matrix metalloproteinase, CXCL: C-X-C motif ligand, VEGF: vascular endothelial growth factor, Treg: regulatory T cell, MDSC: 
myeloid-derived suppressor cell, TGF-β: transforming growth factor beta, CTL: cytotoxic T lymphocyte, CTLA-4: cytotoxic T-lymphocyte associated protein 
4, RA: retinoic acid
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that macrophages and CD4+ T cells released IL-17E in a 
breast tumor model. IL-17E suppression reduced tumor 
cell growth, proliferation, and metastasis by decreasing 
macrophages and type 2 T cells in the TME. They found 
that inhibiting this cytokine may help cure metastatic BC 
[137]. Further research is required to explore the influ-
ence of IL-17E on the treatment and progression of BC, 
given the inconsistencies observed in these two studies 
[123].

On the other hand, Th17 cell exhibits an anti-tumor 
characteristic. In this regard, research indicates that 
Th17 cell number is positively linked to IL-6, IL-17, 
and IL-1β cytokine expression and negatively linked 
to increased metastatic lymph nodes and tumor cell 
angiogenesis. In BC tissues, more Th17 cells increased 

anti-tumor immune responses [138]. Therefore, Fau-
cheux et al. also showed that boosting Th17 cell popula-
tions improved patient survival. In BC tissues, Th17 cell 
expansion induced anti-tumor immune responses, lim-
iting BC development [139]. Numerous elements lead 
to the existence of contradictions in the literature. One 
notable paradox is the limited number of studies indicat-
ing that Th17 cells confer protection to patients with BC. 
The scarcity of research utilizing animal models compli-
cates the extrapolation of these findings to human sub-
jects. Consequently, additional research is warranted. 
Various studies have identified phenotypic variations of 
BC within individual patients, which may account for 
these inconsistencies. The immune responses, underly-
ing causes of the disease, and responses to treatment 

Table 1  Different Th subsets and their function in the TME
Th 
subsets

Tran-
scrip-
tion 
factors

Differen-
tiation 
cytokines

Effector molecules Main functions in the TME Clinical relevance Refs

Th1 STAT4, 
T-bet

IL-12, 
IFN-Υ

IFN-γ, cytolytic en-
zymes (e.g., perforin, 
granzymes)

Promote anti-tumor immunity 
by activating cytotoxic T cells 
and macrophages, inhibit 
tumor angiogenesis

Th1 cells have been linked to a positive outlook 
in different types of cancer due to their ability to 
produce molecules that can directly eliminate 
cancer cells and hinder the formation of new 
blood vessels

[206–211]

Th2 STAT6, 
GATA3

IL-4 IL-4, IL-5, IL-13, 
TGF-β, matrix 
metalloproteinases

Promote tumor growth and 
metastasis by inducing immu-
nosuppressive mechanisms, 
angiogenesis, and tissue 
remodeling

Th2 cells have been linked to unfavorable out-
comes in numerous types of cancer due to their 
ability to produce molecules that support tumor 
progression, metastasis, and suppression of the 
immune system

[206, 208, 
209, 211, 
212]

Th9 STAT6, 
PU-1, 
IRF4, 
BATF

IL-4, TGF-β IL-9, granzymes, 
perforin

Enhance anti-tumor immunity 
by recruiting and activating 
cytotoxic cells, inhibit tumor 
angiogenesis

Th9 cells have demonstrated encouraging anti-
tumor properties in preclinical studies, however, 
their significance in clinical settings is currently 
under scrutiny

[208, 211, 
213, 214]

Th17 STAT3, 
RORγt

IL-1, IL-23, 
IL-6, TGF-β

IL-17, IL-22, matrix 
metalloproteinases, 
angiogenic factors

Promote tumor growth and 
metastasis by inducing inflam-
mation, angiogenesis, and 
immunosuppression
Inhibit tumor progres-
sion by recruiting different 
mechanisms

Th17 cells can have both pro-tumor and anti-tu-
mor effects, depending on the specific context 
and balance of their effector molecules

[188, 188, 
211, 215, 
216]

Th22 STAT3, 
AhR, 
RORγt, 
RUNX3

IL-6, TNF-α IL-22, matrix metal-
loproteinases, angio-
genic factors

Promote tumor growth and 
metastasis by inducing tissue 
remodeling, angiogenesis, and 
immunosuppression

Th22 cells are associated with poor prognosis 
in in numerous types of cancer due to their 
ability to produce molecules that support tumor 
growth, metastasis, and immunosuppression

[208, 211, 
217, 218]

Treg STAT6, 
FOXP3

IL-2, TGF-β IL-10, TGF-β Suppress anti-tumor immune 
responses, promote tumor 
growth and metastasis

Tregs have been linked to unfavorable out-
comes in numerous types of cancer due to their 
ability to inhibit anti-tumor immune reactions 
and facilitate the advancement of tumors.

[208,211, 
215, 
219, ]

Tfh STAT3, 
Bcl6, 
ASCL2

IL-6 IL-21 Promote B cell-mediated anti-
tumor immunity, but can also 
induce immunosuppression

The effects of Tfh cells on tumors can vary, 
as they have the potential to either promote 
or inhibit tumor growth, depending on the 
specific context and the balance of their effector 
molecules.

[208, 211]

Abbreviations: Th1: T helper 1 cells, Th2: T helper 2 cells, Th9: T helper 9 cells, Th17: T helper 17 cells, Th22: T helper 22 cells, Treg: regulatory T cells, Tfh: follicular helper T 
cells, IFN-γ: interferon gamma, IL-2: interleukin-2, IL-4: interleukin-4, IL-5: interleukin-5, IL-6: interleukin-6, IL-9: interleukin-9, IL-10: interleukin-10, IL-12: interleukin-12, 
IL-13: interleukin-13, IL-17: interleukin-17, IL-21: interleukin-21, IL-22: interleukin-22, TGF-β: transforming growth factor beta, TNF-α: tumor necrosis factor alpha, STAT4: 
signal transducer and activator of transcription 4, T-bet: T-box transcription factor TBX21, GATA3: GATA binding protein 3, PU.1: transcription factor PU.1, RORγt: RAR-
related orphan receptor gamma, Foxp3: forkhead box P3, Bcl6: B-cell lymphoma 6 protein, AhR: aryl hydrocarbon receptor, TME: tumor microenvironment
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differ among the various BC phenotypes. Therefore, it 
is essential for future research to evaluate the frequency 
and functionality of Th17 cells across different BC phe-
notypes [123].

Melanoma
Melanoma is a tumor derived from melanocytes, spe-
cialized pigmented cells, mainly found in the skin [140, 
141]. The 17 cells are common in the microenviron-
ment of melanoma. However, the role of these cells in 
tumor immunopathology is paradoxical as Th17 cells 
have shown both antitumor and pro-tumor effects in 
melanoma [75]. Chen and Gao have gathered sufficient 
evidence of this dual role of Th17 cells in melanoma 
[142]. Based on recent studies, there are at least two 
distinct immunological phenotypes in melanoma. One 
type is the Th17 immune phenotype (class A), charac-
terized by high expression of WNT5A, increased cyclin 
activity, and cancer-testis antigens with a poor progno-
sis. A more differentiated state, increased reactivity to 
immune cytokines, and an improved prognosis is linked 
to the Th1 immunological phenotype of class (B) [143]. 
Metastases exhibiting a Th17 phenotype were more fre-
quently BRAF mutated when comparing class compari-
sons between BRAF mutant and wild-type metastatic 
melanoma models. Furthermore, genes connected to the 
IL-17 pathway showed differential expression in BRAF 
mutants compared to wild-type models. Therefore, in the 
case of malignant melanoma, Th17 cells may also exert 
a significant pro-tumor effect [144, 145]. Multiple lines 
of evidence show that Th17 cells in melanoma can have 
strong pro-tumor effects. Reduced apoptosis, enhanced 
invasiveness, and increased metastatic behavior have 
all been linked to BRAF mutations [146]. Studies have 
shown that Th17-derived IL-17 is related to melanoma 
tumor angiogenesis, promoting the growth and sur-
vival of tumors [147, 148]. According to Lin Wang et al. 
IL-17 promoted the secretion of IL-6 by directly affecting 
cells that express IL-17 receptors, including fibroblasts, 
endothelial cells, melanoma cells, and DCs. As a conse-
quence, the melanoma growth was accelerated. Following 
the activation of oncogenic STAT3 by IL-6 in melanoma 
cells, the expression of pro-survival genes such as Bcl-2 
and Bcl-xl was increased [149]. Additionally, the Th17/
Tregs plasticity in the melanoma microenvironment may 
be another mechanism involved in the Th17 cell’s pro-
tumor impact in melanoma. Th17 cells can inhibit anti-
tumor immunity and serve as regulatory cells. Tregs are 
produced through lineage conversion of Th17 cells [150, 
151]. The intermediate phenotypes that co-express the 
transcript components FoxP3 and RORγt are the out-
come of this conversion [151, 152]. Following anti-CD3 
antibody stimulation, tumor-infiltrating Th17Th1cells 

can express FoxP3, CD25, and CTLA4, which are mark-
ers of Treg cells, and produce levels of IL-10 and TGF-β1 
[153].

However, some other studies demonstrated evidence of 
anti-tumor effects of Th17 cells. For example, the adop-
tive transfer of Th17-polarized cells specific to tumors 
into large, well-established B16 melanoma mice was 
more successful than Th1 cells at mediating the eradica-
tion of advanced melanoma. IFN-γ and IL-17 produc-
tion were required for this therapeutic effect to occur 
[154]. Adoptive transfer of Th17 cells specific to tumors 
also inhibits the growth of tumors, according to another 
study [155]. The impact of Th17 cells in eradicating mela-
noma was hindered by deficient IFN-γ or IL-17 A [147]. 
Martin-Orozco et al. discovered that Th17 cell treatment 
induced a striking activation of tumor-specific CD8+T 
cells, which were essential for the anti-cancer effect 
[155]. Tumor-infiltrating Th17 cells induced the expres-
sion of CCL2/20 in tumor tissues, which attracted DCs, 
CD4+ and CD8+ T cells, and other inflammatory leuko-
cytes to promote anti-tumor immunity [155, 156]. Addi-
tionally, Th17 cells can boost CD8+ T cells to have an 
anti-tumor effect. In another study, researchers primed 
TRP-1 transgenic Th17 cells and Pmel-1 T cell recep-
tor (TCR) transgenic CD8+ T cells ex vivo using a RORγ 
agonist. They discovered that these cells could success-
fully regress melanoma when compared to those Th17 
cells that were not treated. The anti-cancer impact was 
significantly increased in mice with existing melanoma 
when co-infused with equal quantities of TRP-1, Th17 
cells, and Pmel-1 Tc17 cells. These findings support ear-
lier results and provide additional evidence that Th17 
cells can enhance CD8+ T cells to have anti-tumor effects 
[157]. Based on the observation that Th17 cells that were 
IL2−/− and Kb−/− (without major histocompatibility com-
plex type I; MHC I) lost their anti-tumor immunity, it 
is possible that Th17 cells stimulated the CTL response 
via IL-2 and peptide/MHC-I, which can be recognized 
by CD8+ T cells and induce CD8+ T cell activation. The 
results indicate that Th17 cells present in the tumor may 
have a dual role, acting as both effectors and regulators in 
the melanoma microenvironment. Therefore, Th17 cells 
may play a role in the development of melanoma. This 
process may be influenced by myeloid-derived suppres-
sor cells that infiltrate the tumor and promote the con-
version of Th17 cells to Tregs through the secretion of 
TGF-β and retinoic acid [158].

Lung cancer
NSCLC comprises the majority of lung cancers [159] and 
is the primary cause of death in cancer patients world-
wide [160]. This unfortunate outcome is probably related 
to the lack of a comprehensive understanding of the 
NSCLC TME, which is a complex mixture of immune 
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cells, fibroblasts, lymphatic and blood vessels [161]. 
This microenvironment aids tumor cells in prolifera-
tion, invasion, and metastasis and contributes to disease 
progression [162]. Several studies aimed to identify the 
role of IL-17 and Th17 specifically in NSCLC progres-
sion [163, 164]. Many of these studies found an increased 
frequency of Th17 as well as enhanced production of 
IL-17 in patients [163, 165, 166]. IL-17 A was shown to 
be able to promote the stemness, migration, and invasion 
of NSCLCs through STAT3/ nuclear factor kappa B (NF-
kB)/Notch1 signaling pathways. Furthermore, blocking 
these pathways indicates capability to suppress NSCLC 
stemness, migration, and invasion. In addition, Th17 cells 
in NSCLC were strongly correlated with poor prognosis 
[163] and poor survival of NSCLC patients [167]. The 
recruitment of these cells appears to be a consequence 
of Kras mutation in lung epithelial cells as explained 
by Chang et al. [168]. IL-17 produced by Th17 contrib-
utes to inflammation, tumor growth, and recruitment of 
tumorigenic cells [168]. Armstrong et al. compared the 
Th17/IL17A axis in the TMEs of K-ras-driven and Ptsd/d 
NSCLC models and elaborated on mechanisms underly-
ing the dual role of Th17 in NSCLC [169]. They discov-
ered that in K-ras-driven mice, Th17 cells were drawn 
to the TME, promoting tumor cell proliferation. Th17-
derived IL17A attracted myeloid derived suppressor cells 
(MDSCs) to suppress the anti-tumor function of CD8+ 
T cells. IL17A can directly cause tumor cells to produce 
more IL-6. IL-6 can work in two ways: autocrine to pro-
mote tumor cell proliferation and paracrine to enhance 
MDSC recruitment. MDSC invasion can also be boosted 
through GM-CSF, granulocyte-colony stimulating factor 
(G-CSF) produced by tumor cells. On the contrary, Th17/
IL17A in the TME of the Ptsd/d NSCLC model inhibits 
tumor growth. Th17 cells are essential for the recruit-
ment of CD103+ DCs, which activate CD8+ T cells for 
anti-tumor action. IL17A increases the expression of 
IL-17R and CD86 on CD103+ DCs, which provides sig-
nals for CD8+ T cell activation. Activated CD8+ T cells 
release IFN-γ, which activates both CD8+ T cells and DC 
tumoricidal activity, resulting in tumor cell death. IL17A 
may suppress CD206+ tumor-associated macrophages 
(TAMs), reducing PD-1 and programmed death ligand 
1 (PD-L1) interactions between lymphocytes and TAMs 
and allowing lymphocytes to exert anti-tumor activity.

Furthermore, Th17 cells enhanced the production of 
chemoattractants CCL2 and CCL20 in the microen-
vironments of lung tumors and facilitated the recruit-
ment of different inflammatory leukocytes (DCs, CD4+, 
and CD8 + T cells). Experimental evidence has demon-
strated that Plasmacytoid dendritic cells (pDC) stimu-
lated by CpG-activated and antigen presentation trigger 
the differentiation and growth of Th17 cells, resulting 
in the production of significant quantities of additional 

inflammatory cytokines, including IFN-γ [170]. When 
pDCs lack MHC II expression, the proliferation of 
Th17 cells in tumor tissue is diminished, and the Th17 
response is impaired, resulting in a decline in the recruit-
ment of immune cells such as cytotoxic T lymphocytes 
(CTL), which eventually contributes to tumor develop-
ment [171].

The overall body of research indicates that Th17 cells 
have opposing roles in distinct genetic drivers of cancer, 
while some critical gaps in our understanding still need 
to be filled. It seems that identical immunological con-
texts elicit varied responses from various malignancies 
[169].

CRC
CRC is the most common cancer in the digestive sys-
tem and is the second leading cause of cancer-related 
death; with a mortality rate of 8-9%, often diagnosed 
in advanced stages and with low overall survival rates. 
Chronic inflammation is linked to tumorigenesis, with 
local inflammation in tumor tissue being infiltrated by 
inflammatory immune cells, which can either progress 
or suppress tumor cell survival and growth [172–174]. 
Human CRCs are characterized by the presence of CD4+ 
T lymphocytes and macrophages producing IL-17  A, 
which contribute to poor prognosis. These cells, which 
are abundant in CRCs and have potent immunosuppres-
sive functions, sustain oncogenesis and tumor progres-
sion. Studies have shown that IL-17 A, IL-17 F, IL-21, and 
IL-22 are overexpressed in CRCs, leading to reduced dis-
ease-free survival (DFS) in patients with these conditions 
[79, 175–178]. Doulabi et al. found that circulating Th17 
and Th22 cells in CRC patients were significantly higher 
than in healthy controls. Infiltrating Th1, Th17, Th22, and 
CD4+ cells co-producing IL-17/IL-22 were also higher 
in tumor tissues compared to para-tumor tissues. The 
percentage of circulating and intra-tumoral Th17, Th22, 
and CD4+ cells co-producing IL-17/IL-22 was higher in 
advanced stages [172]. Another study examined IL-17 A 
dynamics along the human colorectal adenoma-carci-
noma spectrum and has found that the expression of 
IL-17 A, at both the mRNA and protein levels, was sig-
nificantly increased in the adenoma stage and persisted 
to the CRC stage [179]. It has been found that a high 
RORγt/CD3 ratio correlated with lymph node metastasis 
and is a decisive prognostic factor for shortened postop-
erative survival, suggesting Th17 cells may increase the 
metastatic ability of tumor cells in CRC [180]. A recent 
investigation revealed that TWEAK, a cytokine synthe-
sized and released by Th17 cells, interacts with Fn14 
receptors present on malignant cells. This interaction 
facilitates the migration and invasion of colorectal cancer 
(CRC) cells to the liver, thereby contributing to the devel-
opment of colorectal cancer liver metastasis (CRLM) 
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[181]. Single-cell RNA sequencing analysis revealed 
distinct distributions of nonmalignant cells within the 
primary tumors of patients diagnosed with metastatic 
colorectal cancer (mCRC) in contrast to those with non-
metastatic colorectal cancer. Notably, this analysis indi-
cated that Th17 cells were predominantly localized in the 
primary lesions associated with mCRC [181].

Th17 also has anti-tumor effects. Previous studies 
have demonstrated that the anti-tumor effect of IL-17 
in various cancer types is related to enhanced recruit-
ment and activity of lymphocytes, NK cells, and DCs 
into the tumor site and production of the anti-tumor 
cytokine IFN-γ [182–184]. IL-17  F is another potential 
factor involved in the development of CRC. Tong et al. 
have shown a protective effect of IL-17 F in the develop-
ment of CRC. They found decreased tumor growth of 
IL-17  F-transfected HCT116 cells compared to that of 
mock transfectants when transplanted into nude mice. 
They also showed decreased VEFG and angiogenesis in 
IL-17 F overexpressing tumor cells [185].

In favor of the dual role of Th17 tumor-infiltrating cells, 
ex vivo analysis showed that tumor-infiltrating IL-17+ 
cells mainly consist of CD4+ Th17 cells with multifaceted 
properties. As a result of IL-17 secretion, CRC-derived 
Th17 triggered the release of pro-tumorigenic factors by 
tumor and tumor-associated stroma. However, on the 
other hand, they favored the recruitment of beneficial 
neutrophils through IL-8 secretion, and they drove highly 
cytotoxic CCR5 + CCR6 + CD8 + T cells into tumor tissue 
through CCL5 and CCL20 release. According to these 
findings, the presence of intra-epithelial, but not of stro-
mal Th17 cells, positively correlated with improved sur-
vival [186].

HCC
HCC is one of the most common cancers worldwide. It 
has low overall survival (OS) rates due to factors such 
as distant metastasis, local recurrence, treatment resis-
tance, and lack of early diagnosis, despite advancements 
in molecular biology and cancer therapy [187]. Th17 cells 
play complex roles in inflammation and tumor immu-
nity. They express the transcription factor, RORγ, and 
secret cytokines, including IL-17  A, IL-17  F, and IL-22, 
IL-21, which act as a pro-inflammatory mediator. IL-17 
is generally believed to induce chronic inflammation and 
has pro-tumorigenic effects, and accumulating evidence 
indicated that Th17 cells promoted HCC development 
and were associated with poor survival [188]. Zhang 
et al. studied the distribution of Th17 cells in 178 HCC 
patients. There were increased Th17 cells in tumor tis-
sues when compared to non-tumor regions, and intra-
tumoral IL-17 producing cell density was an independent 
prognostic factor for significantly shorter overall OS and 
DFS [188, 189]. A study found an imbalance in Treg/Th17 

cells in HCC patients’ PBMCs. The increased numbers of 
Treg and Th17 cells were positively correlated with HCC 
tumor stage and size, suggesting Treg and Th17 cells may 
promote HCC invasion and progression, and a Treg/
Th17 cell imbalance could be a key indicator for HCC 
progression and prognosis. Th17 cells promote tumor 
growth through IL-6-induced angiogenesis and inhibit 
it by amplifying cytotoxic lymphocyte presence [187]. 
Tumor-derived chemokines like monocyte chemoattrac-
tant protein-1 (MCP-1) and RANTES influence Th17 cell 
recruitment to tumor contexts. Th17 cells are found in 
tumor-infiltrating T lymphocytes in cancer patients, indi-
cating their potential recruitment, induction, or devel-
opment in the TME. This infiltration is related to poor 
prognosis in HCC, CRC, and pancreatic carcinoma [124, 
189]. Accumulation of intra-tumoral IL-17-producing 
cells may promote tumor progression by fostering angio-
genesis. Additionally, these IL-17-producing cells found 
within the tumor could potentially be used as a prognos-
tic marker [124, 189]. The presence of IL-17  A-positive 
cells in tumor tissues has been associated with increased 
metastasis and a poorer prognosis in hepatocellular car-
cinoma (HCC). Subsequent studies have revealed that 
this correlation arises from IL-17 A’s capacity to promote 
cell migration by activating NF-kB transcription factors 
and increasing the expression of MMP-2 and MMP-9 
[190, 191].

Huang et al. conducted a study on thermal ablation 
for treating HCC in mice. The study found that thermal 
ablation decreased Th17 cell frequency in peripheral 
blood, increased Treg cell frequency, and significantly 
downregulated IL-17 and IL-23 levels while upregulat-
ing IL-10 and TGF-β levels, suggesting that Th17 plays 
a crucial role in cancer promotion [192]. Another study 
found that Th17 cells express higher miR-132 compared 
to primary CD4+ cells. It positively regulates Th17 cell 
differentiation, enhances IL-22 production, and improves 
the function of Th17 on hepatic stellate cells (HSCs) for 
their tumor-promoting effects [193]. In hepatitis B virus 
(HBV)-related HCC, intra-tumoral densities of Th17 cells 
were augmented. These Th17 cells were thought to pro-
mote tumor progression and correlate with poor survival 
rates by fostering angiogenesis. In patients with HCC, 
high expression of intra-tumoral IL-17 and IL-17 recep-
tor E were reported, associated with poorer survival rate 
and increased recurrence [194].

Anti-programmed cell death ligand 1 (PD-L1) therapy 
is recognized as a potential strategy for addressing hepa-
tocellular carcinoma (HCC). Nevertheless, resistance 
to this treatment frequently develops in nearly all cases. 
Studies have indicated an elevated infiltration of patho-
genic Th17 cells in HCC tissues that exhibit drug resis-
tance. These Th17 cells produce IL-17 A, which promotes 
the upregulation of PD-L1 on HCC cell surfaces, thereby 
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contributing to the resistance against anti-PD-L1 therapy 
and exacerbating the clinical scenario [195].

Th17 cells can also prevent tumor cell apoptosis, 
decrease anti-tumor responses, increase tumor angio-
genesis, and stimulate tumor metastasis and invasion. 
Experimental evidence suggests that IL-17 can also sup-
press tumors during tumorigenesis and metastasis [64]. 
In various human cancers, CD3+ CD4+ RORγ+ cells are 
present at higher frequencies in the TILs than in PBMCs, 
suggesting their role in anti-tumor immunity. IL-17  A 
is a direct target of RORγ, which is the key transcrip-
tion factor controlling the development and function of 
CD4+ Th17 and CD8+ Tc17 cells. Xiao Hu et al. identified 
synthetic agonists that selectively activate RORγ. They 
enhance the effector function of type 17 cells by increas-
ing the production of cytokines/chemokines such as 
IL-17 A and GM-CSF, augmenting the expression of co-
stimulatory receptors like CD137, CD226, and improving 
survival and cytotoxic activity. They also attenuate immu-
nosuppressive mechanisms by curtailing Treg formation, 
diminishing CD39 and CD73 expression, and decreasing 
levels of co-inhibitory receptors, including PD-1 and T 
cell immunoreceptor with Ig and ITIM domains (TIGIT) 
on tumor-reactive lymphocytes [114].

Hepatocellular carcinoma (HCC) is classified as a 
hypermetabolic neoplasm. The unrestrained growth of 
the tumor, coupled with an insufficient oxygen supply 
within the TME, has been shown to lead to the upregula-
tion of HIF-1α. This factor is posited to play a crucial role 
in activating RORγt, functioning through the formation 
of a tertiary complex with RORγt and the recruitment 
of p300 to the promoter region of IL-17. Additionally, 
HIF-1α is known to inhibit the development of Tregs by 
interacting with FoxP3 and promoting its degradation via 
the proteasomal pathway [196–202].

Potential clinical implications of manipulating 
Th17 cells in the context of cancer therapies
Considering the conflicting findings about the Th-17 
cell’s pro- and anti-tumor properties, it may be neces-
sary to tailor treatment plans to each patient’s specific 
cancer, stage, and even associated mutations in order to 
determine whether Th17 activation or inhibition would 
be more beneficial. A clear therapeutic goal for patients 
with malignancies that Th17 cells worsen is to decrease 
the quantity of these cells in the tumor microenviron-
ment. The mice lung cancer model demonstrated tumor 
reduction upon IL-17 suppression, according to a study 
by Chang et al. This reduction was due to a decrease 
in tumor cell proliferation and angiogenesis [184]. In 
contrast, clinical trials aimed at enhancing particu-
larly targeted T cell populations have showed signifi-
cant potential in the treatment of cancer [36]. Notably, 
Paulos and colleagues found that the activity of human 

Th17 cells was increased when they were stimulated 
with CD3 and ICOS agonists, as compared to when they 
were activated with CD28, when transferred into mice 
with tumors [177]. The substantial antitumor response 
observed after infusing Th17 cells into mice with specific 
types of cancer, such as melanoma, suggests that fur-
ther research aimed at directing and utilizing these cells 
to eliminate tumor tissue in clinical settings could offer 
therapeutic possibilities for a wide range of malignancies 
[67]. In addition, for individuals with increased Th17-
based inflammation in the tumor microenvironment, 
addressing Th17 cells or cytokines specifically may have 
promise [67]. Using the fully-humanized anti-IL-17  A 
monoclonal antibody secukinumab (AIN457) to treat ER- 
or triple-negative breast cancer in mice increased anti-
tumor immunity (CD4 + and CD8 + T cells), decreased 
PDL-1 expression, and reduced Treg cell infiltration 
[172]. Interestingly, a combination treatment approach 
[203] anti-IL-17  A (secukinumab) and anti-PDL1 (pem-
brolizumab) improved antitumor immunity in support of 
its eradication [100]. Contrarily, researchers found that 
exposing breast cancer cell lines to IL-17E had an anti-
tumorigenesis impact [204]. Discrepancies in results 
may be attributed to variations in experimental circum-
stances and environments [7]. Important factors to con-
sider include the timing of breast cancer cells exposure 
to IL-17, the type of cells present, and the stage of the 
disease [50]. Furthermore, substances like phosphodi-
esterase-4 inhibitor (PDE-4 inhibitors) and JAK/STAT 
inhibitors have the ability to influence the IL-17/Th17 
signaling pathway and might potentially be utilized in 
the treatment of lung cancer in a similar manner. Target-
ing this pathway could hold great promise as a treatment 
for lung cancer, according to the safety and effectiveness 
of the drugs now under development. There is new evi-
dence that the IL-17/Th17 and PD-1 pathways are con-
nected, which opens the prospect of a synergistic effect 
between anti-PD(L)1/anti-IL-17 and anti-PD(L)1/anti-
IL23 targeting [205]. The available data indicates that 
the targeting and reprogramming of several downstream 
signaling pathways of IL-17 A could be a crucial comple-
mentary strategy to enhance the effectiveness of conven-
tional cancer therapy [89]. Thus, additional investigation 
is required in the future to develop anti-cancer tactics 
that specifically focus on IL-17 signatures and their asso-
ciated signaling pathways.

Conclusions
Th17 cells are acknowledged as a crucial cell type that 
promotes inflammation in different pathophysiologic 
conditions. These cells infiltrate several forms of cancers. 
Th17 cells can display either pro-tumor or anti-tumor 
properties, depending on the unique characteristics of 
the tumor. In this review, we have gathered evidence of 
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the contradictory role of Th17 cells in BC, melanoma, 
lung cancer, CRC and HCC. Pro-tumor effects of Th17 
cells range from promoting metastasis, tumor growth and 
angiogenesis to recruiting MDSDs and increasing Treg 
to suppress anti-tumor responses. On the other hand, 
Th17 cells’ anti-tumor effects might include recruitment 
of DCs and NK cells, activating CD8+ T cells and subse-
quent tumor cell death, suppressing CD206+ TAMs and 
reducing PD-1/PD-L1 interactions and production of 
anti-tumor cytokines. This opposing behavior of Th17 
cells might be related to different immune responses, 
genetic or phenotypic variances within each cancer or 
small number of studies on this matter. Given the crucial 
significance of the T17 population in the advancement of 
various illnesses, it is important to understand the mech-
anisms underlying T17 cells’ functions in different types 
of malignancies. This area of research holds great poten-
tial for cancer therapy development.
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