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Abstract
Background The tertiary lymphoid structures (TLSs) have an immunomodulatory function and have a positive 
impact on the survival outcomes of patients with oral squamous cell carcinoma (OSCC). However, there is a lack of 
standard approaches for quantifying TLSs and prognostic models using TLS-related genes (TLSRGs). These limitations 
limit the widespread use of TLSs in clinical practice.

Methods A convolutional neural network was used to automatically detect and quantify TLSs in HE-stained whole 
slide images. By employing bioinformatics and diverse statistical methods, this research created a prognostic model 
using TCGA cohorts and explored the connection between this model and immune infiltration. The expression 
levels of three TLSRGs in clinical specimens were detected by immunohistochemistry. To facilitate the assessment 
of individual prognostic outcomes, we further constructed a nomogram based on the risk score and other clinical 
factors.

Results TLSs were found to be an independent predictor of both overall survival (OS) and disease-free survival 
in OSCC patients. A larger proportion of the TLS area represented a better prognosis. After analysis, we identified 
69 differentially expressed TLSRGs and selected three pivotal TLSRGs to construct the risk score model. This model 
emerged as a standalone predictor for OS and exhibited close associations with CD4 + T cells, CD8 + T cells, and 
macrophages. Immunohistochemistry revealed high expression levels of CCR7 and CXCR5 in TLS + OSCC samples, 
while CD86 was highly expressed in TLS- OSCC samples. The nomogram demonstrates excellent predictive ability for 
overall survival in OSCC patients.

Conclusions This is the first prognostic nomogram based on TLSRGs, that can effectively predict survival outcomes 
and contribute to individual treatment strategies for OSCC patients.
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Convolutional neural network
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Background
Oral squamous cell carcinoma (OSCC) is the most 
common type of head and neck squamous cell carci-
noma (HNSCC), and is characterized by a notable ten-
dency for metastasis to cervical lymph nodes at a high 
rate [1, 2]. According to the Global Cancer Observa-
tory (GCO), there were 389,846 diagnosed cases in 
2022, including 188,438 deaths. There will be a growth 
in incidence and mortality until 2040, as predicted by 
the GCO. Currently, prognosis prediction for patients 
primarily involves assessing tumor dimensions, lymph 
nodes and distant organ metastases [3]. However, 
the prognoses of patients with identical tumor node 
metastasis (TNM) stages are different, which shows 
that the TNM stage may fail to capture the immune 
heterogeneity of OSCC [4, 5].

The tertiary lymphoid structures (TLSs), an ectopic 
lymphoid organ that forms in nonlymphoid tissues 
[6], are correlated with favorable clinical outcomes 
and an improved response to immunological therapy 
[7–10] across various cancers [11–16]. In the absence 
of external fibrous capsules, TLSs are directly exposed 
to the tumor microenvironment and have a stronger 
specific immune response than other noninfiltrating 
lymphocytes [7, 17, 18]. A recent study revealed that 
TLSs serve as an innovative prognostic indicator in 
the field of HNSCC [19]. The presence of TLSs, which 
is frequently observed in oral tongue squamous cell 
carcinoma (OTSCC), is utilized for predicting immu-
notherapy sensitivity [20]. Furthermore, the presence 
of TLSs independently correlates with the overall sur-
vival (OS) rate and disease-free survival (DFS) rate in 
patients of OSCC [21]. Thus, TLSs have the potential 
to be a complementary indicator for predicting clini-
cal outcomes after OSCC surgery. Although TLSs have 
received increasing attention in prognostic evaluation, 
there is still no recommended TLS-related molecular 
marker for building a prognostic model for the accu-
rate stratification of OSCC patients, which limits the 
ability of TLSs to help clinicians make personalized 
clinical decisions.

In this study, we used the convolutional neural net-
work (CNN) to automatically identify and quantify 
TLSs in hematoxylin and eosin (HE) stained whole 
slide images (WSIs) of OSCC [22], aiming to make 
the assessment of TLSs more efficient and accurate. 
We explored TLS-related genes (TLSRGs) related to 
OSCC through bioinformatics analysis. Based on the 
TLSRGs, we established a risk score model capable 
of predicting the prognosis of OSCC patients and 
evaluated the tumor immune microenvironment. By 
introducing clinical variables into the model, we con-
structed a nomogram model [5] aimed at providing 
individualized evaluations for OSCC patients.

Methods
Data acquisition
High-throughput sequence data and correspond-
ing clinicopathological information for 503 HNSCC 
(Additional file 1) and 54 adjacent normal mucosa tis-
sues were downloaded from The Cancer Genome Atlas 
(TCGA) [23]. According to the tumor location, the 
clinical information and data of 336 OSCC tissues were 
extracted for subsequent analysis. Patients lacking 
survival information were omitted from the prognos-
tic analysis. The HE-stained images were downloaded 
from the Cancer Digital Slide Archive [24].

TLSs quantification
Using the CNN, the presence of TLSs was identified 
in HE-stained WSIs of OSCC patients. This approach 
can be used to determine the area occupied by TLSs 
and their density, and establish a heatmap of lym-
phocytes [22], which allows us to define TLSs in tis-
sues. Firstly, the modified DeepLab v3 + CNN [25, 26] 
was used to detect the candidate TLS regions in the 
original HE-stained images, and the active contour 
model was applied to optimize the boundaries of the 
candidate TLS regions. Then, lymphocytes were seg-
mented to identify the following features: number of 
lymphocytes, size of TLS region, and the density. The 
candidate regions were considered as TLSs when the 
number of lymphocytes was greater than 45 and the 
area was greater than 6245µm2. TLSs were categorized 
into three types based on a previously published scale 
[27, 28]: [1] lymphoid aggregates (Agg), characterized 
by indistinct masses of lymphocytes; [2] primary folli-
cle-like TLSs (FL1), comprising immature TLSs com-
posed of round lymphocytes lacking germinal centers; 
and [3] secondary follicle-like TLSs (FL2), representing 
mature TLSs as round clusters of lymphocytes with the 
formation of germinal centers. Patients were catego-
rized as TLS + if they had at least one TLS and as TLS- 
if they had no TLSs. Among TLS + tumors, patients 
with an area proportion above the series median were 
categorized into the high-TLS group, while patients 
with an area proportion below the series median were 
classified into the low-TLS group. The TLS + tumors 
could also be classified as follows: [1] Agg + FL1 group: 
tumors comprising at least one FL1, without FL2, with 
or without Agg; and [2] Agg + FL1 + FL2 group: tumors 
containing at least one FL2, irrespective of the pres-
ence of Agg and FL1.

DEGs, GO, KEGG analyses
Both TLS + OSCC tissues and TLS- OSCC tissues were 
compared with normal tissues for differential analy-
sis. Analysis of differentially expressed genes (DEGs) 
was performed using the R package in combination 
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with the Wilcoxon test. Visualization of the data was 
accomplished through the creation of heatmaps using 
the pheatmap package [29], complemented by the gen-
eration of volcano plots using R software. Based on the 
Gene Ontology (GO) [30] and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [31] databases, we per-
formed functional enrichment analysis of TLSRGs 
using the clusterProfiler package [32]. Those func-
tional categories with an adjusted p-value < 0.05 were 
regarded as significantly enriched.

Construction of the risk score model and prognostic 
nomogram
Univariate Cox regression analysis was utilized to 
assess the relationship between TLSRGs and OS in 
the TCGA cohort. To prevent overfitting and stream-
line the gene selection process, stepwise Cox regres-
sion analysis was utilized to identify the optimal genes 
based on genes detected via the Lasso algorithm. The 
risk score was computed by multiplying gene expres-
sion with a linear combination of regression coef-
ficients derived from the Cox regression analysis. 
Patients were stratified into a high-risk group and 
a low-risk group based on the median risk score. 
Kaplan-Meier (K-M) survival curves were generated 
to compare OS between the low- and high-risk groups. 
The precision of the risk score model was evaluated 
through receiver operating characteristic (ROC) curve 
analysis via the survival ROC package [33]. To explore 
the role of risk score in evaluating prognosis, we used 
the Cox regression model to perform a multivariate 
analysis of risk score and other clinical factors (e.g., 
gender, age, tumor grade, perineural invasion, nodal 
extracapsular spread, lymph node neck dissection) to 
obtain independent factors for OSCC. To facilitate 
the assessment of individual prognostic risk, we fur-
ther constructed a nomogram based on the indepen-
dent factors. The nomogram’s predictive precision 
was evaluated through calibration curves and C-index, 
ensuring its reliability and effectiveness in forecasting 
outcomes.

Immune cell infiltration estimation
To investigate the relationship between the presence of 
TLSs and immune cell infiltration, we used the Tumor 
Immune Estimation Resource (TIMER) [34], which can 
estimate the levels of six tumor-infiltrating immune 
subsets. Relationships between the risk score model 
and six types of immune cells were analyzed with Pear-
son’s correlation coefficient. The same method was 
utilized to evaluate the correlations between the pro-
portion of TLS area and six immune cell types.

Tissue samples
Primary OSCC tissues and adjacent normal mucosa 
tissues, surgically resected at the Department of Oral 
and Maxillofacial Surgery of the Second Xiangya Hos-
pital between April 2010 and July 2013, were utilized 
in this study. Participants who received chemotherapy, 
radiation, or preoperative interventions were ineligible 
for participation in this study.

Immunohistochemistry
The formalin-fixed paraffin-embedded specimens 
were sectioned into 4 μm slices for immunohistochem-
ical staining. The sections were baked at 60 °C for 2 h 
and subsequently dewaxed with xylene. Different con-
centrations of alcohol were utilized for hydration treat-
ment, and antigen extraction was performed by citrate 
solution combined with high-pressure repair. Upon 
cooling, endogenous peroxidase was removed from 
tissue sections using 3% hydrogen peroxide, followed 
by triple rinsing with freshly prepared PBS. To miti-
gate nonspecific binding, the sections were incubated 
for 60 min in goat serum. The sections were placed in 
a humidified box at 4  °C, where they were incubated 
with primary antibodies (anti-CCR7, Proteintech, 
25898-1-AP, 1:200; anti-CXCR5, Abcam, ab254415, 
1:400; anti-CD86, Abcam, ab269587, 1:100) overnight. 
Following washing, the sections were treated with sec-
ondary antibodies for 60 min at 37  °C. After washing, 
the sections were stained with DAB and hematoxylin.

Statistical analyses
The data from the experiments were rigorously ana-
lyzed with GraphPad Prism 8.0, R software v4.0.1, 
and ImageJ to ensure precision. For comparisons 
between two groups, we applied the Student’s t test 
and Wilcoxon test. K-M analysis was used to construct 
survival curves, and the log-rank test was used to com-
pare survival variances across groups. Univariate and 
multivariate Cox regression analyses were employed to 
determine the OS-related prognostic factors. P < 0.05 
was considered to indicate statistical significance. *, 
**, and *** represent p < 0.05, p < 0.01, and p < 0.001, 
respectively.

Results
Clinicopathological characteristics and TLSs expression of 
OSCC patients
In our analysis of 336 OSCC patients from the TCGA 
database, we collected data on various clinicopatho-
logical characteristics: age (< or ≥ 60 years), gender, 
smoking, drinking, pT classification, pN classification, 
pTNM classification, grade, perineural invasion (PNI), 
and nodal extracapsular spread (NES). These features 
are summarized in Table  1. Then the CNN was used 
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to determine the three types of TLSs and their respec-
tive area proportions in routine HE-stained WSIs, 
which were obtained from the TCGA database (Fig. 1). 
We identified 265 TLS + samples among the 336 
OSCC samples, and the TLS area accounted for 0.1–
6.2% of the total tumor area (mean 2.8%). Among the 
TLS + OSCC samples, ninety cases (34.0%) were Agg-
type TLSs, one hundred cases (37.7%) were FL1-type 
TLSs, and seventy-five cases (28.3%) were FL2-type 
TLSs (Additional file 2). Our research investigated 
the correlations between TLSs expression and clini-
copathological parameters in 336 OSCC patients. The 
results revealed that the occurrence of TLSs was nega-
tively correlated with the pT classification (p = 0.003), 
pN classification (p = 0.003), and pTNM classifica-
tion (p = 0.032). In addition to the PNI (p = 0.013), 
TLS + OSCC was also negatively correlated with the 
NES (p = 0.022, Table 1).

TLSs correlated with a positive prognosis in OSCC patients
Then the prognostic significance of TLSs in OSCC 
patients was assessed. According to the K-M survival 
analyses, TLS + OSCC was correlated with good OS 
and DFS (Fig. 2A, D). Based on the TLSs classification 
in the Methods section, we conducted subgroup analy-
ses of TLS + OSCC patients. Compared with those in 
the low-TLS group, OS and DFS in the high-TLS group 
improved significantly (Fig.  2B, E). The K-M survival 
assessments indicated enhanced OS for patients in 
the Agg + FL1 + FL2 group compared with those in 
the Agg + FL1 group. Conversely, disease-free survival 
(DFS) rates between these groups showed no notable 
disparity (Fig.  2C, F). These results revealed that the 
presence of TLSs was a good prognostic indicator for 
OSCC patients, and patients with a greater proportion 
of TLSs had better OS and DFS.

To evaluate the potential of TLSs as a standalone 
predictor of outcomes in OSCC patients, we per-
formed both univariate and multivariate Cox regres-
sion analyses. According to the univariate analysis, 
older age (> 60 years, hazard ratio (HR) = 1.022; 95% 
confidence interval (CI), 1.009–1.036; p < 0.001), pT3-4 
stage (HR = 1.868; 95% CI, 1.375–2.539; p < 0.001), and 
lymph node metastasis (HR = 1.523; 95% CI, 1.148–
2.021; p = 0.004) were linked to an elevated risk of OS, 
while the gender (male, HR = 0.737; 95% CI, 0.551–
0.987; p = 0.040) and the presence of TLSs (HR = 0.430; 
95% CI, 0.324–0.572; p < 0.001) were correlated with a 
reduced risk (Fig.  2G). According to the multivariate 
analysis, age, pT stage, lymph node metastasis status, 
and TLSs were found to be independent prognostic 
factors for the OS rate of OSCC patients. Specifically, 
only the presence of TLSs (HR = 0.484; 95% CI, 0.361–
0.649; p < 0.001) was linked to a decreased risk of mor-
tality (Fig. 2H).

Differential expression of genes in TLS + and TLS- OSCC 
tissues
TLS + and TLS- OSCC tissues were compared with 
normal mucosa tissues to identify DEGs. The heat-
maps clearly distinguished between OSCC samples 
and normal samples based on the DEGs (Fig.  3A and 
D). The volcano plots revealed that 13 DEGs were 
downregulated and 203 DEGs were upregulated in 
the TLS + OSCC group (Fig. 3B), while 32 DEGs were 
downregulated and 207 DEGs were upregulated in the 
TLS-OSCC group (Fig. 3E). By comparing the upregu-
lated DEGs in the TLS + and TLS − groups, we obtained 
64 DEGs via a Venn diagram. Similarly, we obtained 
5 DEGs that were downregulated in the TLS + OSCC 
tissues but not in the TLS- OSCC tissues. These 69 
(64 + 5) DEGs, defined as TLSRGs, were used for fur-
ther modeling (Fig. 3C).

Table 1 Associations between clinicopathological 
characteristics and TLSs expression in 336 OSCC patients in the 
TCGA cohort
variable (No.) Negative (173) Positive (163) p
Age (Years) 0.442
 < 60 71(41%) 74(45.4%)
 ≥ 60 102 (59.0%) 89 (54.6%)
Gender 0.707
 Male 131 (75.7%) 120 (73.6%)
 Female 42 (24.3%) 43 (26.4%)
Smoking 1
 Yes 80 (46.2%) 76 (46.6%)
 No 93 (53.8%) 87 (53.4%)
Drinking 0.639
 Yes 117 (67.6%) 108 (66.3%)
 No 56 (32.4%) 55 (33.7%)
pT classification 0.003
 T1 ∼ T2 51 (29.5%) 74 (45.4%)
 T3 ∼ T4 122 (70.5%) 89 (54.6%)
pN classification 0.003
 N0 55 (31.7%) 79 (48.5%)
 N1 ∼ N3 118 (68.2%) 84 (51.5%)
pTNM classification 0.032
 Stage I ∼ Stage II 28(16.2%) 42(25.8%)
 Stage III ∼ Stage IV 145 (83.8%) 121 (74.2%)
Grade 0.383
 G1 ∼ G2 125 (72.2%) 125 (76.7%)
 G3 ∼ G4 48 (27.7%) 38 (23.3%)
Perineural invasion 0.013
 Positive 83 (47.9%) 58 (35.6%)
 Negative 90 (52.1%) 105 (64.4%)
Nodal extracapsular spread 0.022
 Gross Extension 37 (21.4%) 25 (15.3%)
 Microscopic Extension 46 (26.6%) 29 (17.8%)
 No Extranodal Extension 90 (52.0%) 109 (66.9%)
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To further explore the biological functions of the 
TLSRGs, we conducted GO and KEGG analyses on 
the 69 TLSRGs. GO analysis identified the primary 
functional categories in biological processes as the 
chemokine-mediated signaling pathway, regulation of 
dendritic cell antigen processing and presentation, and 
dendritic cell apoptotic process. Regarding molecu-
lar function, these TLSRGs were mainly involved in 
receptor-ligand activity and cytokine activity. KEGG 
analysis revealed that the TLSRGs were associated 
with cytokine-cytokine receptor interaction and che-
mokine signaling pathway (Fig. 3F).

Construction and identification of a prognostic model for 
OSCC
To determine whether the TLSRGs were associ-
ated with patient clinical outcomes, the 69 TLSRGs 
were evaluated by univariate Cox regression analysis 
(Additional Table  1). A total of 11 TLSRGs signifi-
cantly influenced the OS of OSCC patients (Fig.  4A). 
These 11 TLS-related genes (TLSRGs) were subjected 
to Lasso Cox analysis, resulting in the filtration of 
9 genes. (Fig.  4B). Stepwise Cox regression analysis 
was subsequently performed, and three key TLSRGs 
(CD86, CXCR5, and CCR7) were chosen to construct 
a model for prediction (Table  2). The model formula 
was as follows: risk score = (0.3169 × CD86 expression) 
+ (-1.3345× CXCR5 expression) + (-0.2974 × CCR7 
expression). TLSs signatures reported in HNSCC and 
other cancer studies were summarized in Additional 

Table  2, and our key genes CXCR5 and CCR7 were 
also in the TLSs gene signature list for HNSCC. With 
respect to the median risk score, the OSCC patients 
were then divided into two groups: one at high risk 
and the other at low risk (Fig.  4C). The patients’ sur-
vival time and the heatmaps of the three TLSRGs 
are presented in Fig.  4D and E. These findings indi-
cated a direct correlation between heightened risk 
scores and elevated CD86 expression, concurrently 
revealing a decrease in CXCR5 and CCR7 expres-
sion. An increased risk score was also accompanied 
by a decrease in survival time. The K-M curve dem-
onstrated that the survival rate of the low-risk group 
(n = 165) was markedly greater than that of the high-
risk group (n = 165) (Fig.  4F). Additionally, the ROC 
curves revealed AUC values of 0.674, 0.652, and 0.549 
for 1, 3, and 5 years respectively, suggesting that the 
prognostic model exhibited good sensitivity and speci-
ficity (Fig. 4G).

Correlations between the prognostic model and clinical 
parameters
To further substantiate the reliability of the model, 
we investigated the correlations between the expres-
sion levels of the three key TLSRGs and clinical data in 
OSCC patients. First, our research focused on the cor-
relations between survival outcomes and the expres-
sion of the three TLSRGs in OSCC patients. The K-M 
survival analyses revealed that the elevated expressions 
of CCR7 and CXCR5 were directly correlated with 

Fig. 1 Identification of TLS regions. (A) 1x HE-stained whole slide image of OSCC tissues. Red dashed area, identified TLS regions. (B) Heatmap of TLS 
regions. Green area, identified TLS regions; dark red area, non-TLS organization structure
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improved OS (Fig.  5A, B), while the high expression 
of CD86 indicated a poor prognosis (Fig. 5C). Second, 
we investigated the relationships between the clini-
cal parameters and the expression levels of the three 
TLSRGs. Our findings revealed a significant correla-
tion between the downregulation of CCR7 (p = 0.036) 
and CXCR5 (p = 0.0051), alongside the upregulation 
of CD86 (p = 0.018), with the incidence of positive 
lymph node metastasis (Fig. 5D-F). In addition, CCR7 
expression was closely related to the pT classification 
(p = 0.00059), pTNM classification (p = 0.002), NES 
(p = 0.041), and PNI (p = 0.025) (Fig.  5D; Additional 
Fig.  1A). Additionally, observable disparities in CD86 
expression were noted across varying grade (p = 0.043) 
and PNI groups (p = 0.0026) (Fig.  5F; Additional 
Fig.  1C). We employed a heatmap to delineate the 
relationships between the risk score and various clini-
cal parameters. This visual representation revealed 

a significant association between the high-risk group 
and pT classification, pTNM stage, PNI, NES, and 
lymph node metastasis (Fig.  5G). The above results 
indicated that the three TLSRGs were closely related 
to lymph node metastasis and the prognostic model 
exhibited favorable predictive ability.

Correlations of TLSs, risk score, and tumor-infiltrating 
immune cells
Given the crucial role of TLSs in antitumor immunity, 
TIMER2.0 was utilized to investigate the character-
istics of immune cell infiltration in the TLS + OSCC 
group. As shown in Fig.  6A, strong correlations 
are noted between TLSs and B cells, CD4 + T cells, 
CD8 + T cells, and macrophages in OSCC. A high ratio 
of TLS area suggested abundant B cell, CD4 + T cell, 
and macrophage infiltration in the microenvironment 
(Fig.  6B). The infiltration of CD4 + T cells, CD8 + T 

Fig. 2 Impact of TLSs on OS and DFS in patients with OSCC. (A, D) OS and DFS analyses between the TLS- group and TLS + group. (B, E) OS and DFS analy-
ses between the low TLS group and high TLS group. (C, F) OS and DFS analyses between the Agg + FL1 group and Agg + FL1 + FL2 group. G, H Univariate 
analysis (G) and multivariate analysis (H) of TLSs and clinicopathological parameters in the TCGA cohort
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cells, and macrophages exhibited a negative correla-
tion with the risk score (Fig.  6C), indicating a poten-
tial inverse relation between immune cell presence and 
risk assessment metrics. These results suggested that 
these three immune cell types played important roles 
in the formation of TLSs and bolstered anti-tumor 
defenses.

Establishment of the prognostic nomogram for 
individualized evaluation
Immunohistochemistry was used to investigate the 
expression of the characteristic proteins correspond-
ing to the three TLSRGs in clinical samples (Fig. 7A). 
The result showed that the percentage of CD86-pos-
itive cells was the lowest in the TLS + OSCC group 
(Fig.  7D). Compared with those in the normal group 
and TLS- OSCC group, the percentages of cells posi-
tive for CCR7 and CXCR5 were greater in TLS + OSCC 
group (Fig. 7B, C).

To further provide reliable prognostic information 
tailored to individual patients, a predictive nomo-
gram was developed to estimate the survival rates at 
one, three, and five years for OSCC patients (Fig. 8A). 

Additionally, a calibration plot was generated to illus-
trate the model’s good predictive value, depicting the 
predicted probabilities at 1, 3, and 5 years relative to 
the actual observations (Fig.  8B). The C-index of this 
model was provided in Additional Table 3.

Discussion
In this study, we analyzed HE-stained WSIs for the 
detection of TLSs by employing the CNN. Our find-
ings validated TLSs as the robust, independent prog-
nostic marker for OSCC patients. To make TLSs 
broadly applicable in clinical settings, we developed 
a risk score model including three TLSRGs and veri-
fied its independent prognostic value. We also inves-
tigated the relationships between TLSs, risk score, and 
immune cell infiltration. After verifying the protein 
expression of the three TLSRGs in clinical samples, a 
nomogram model was constructed for the individu-
alized evaluation of OSCC patients by incorporating 
routine clinical metrics.

We found that TLSs were unevenly distributed in 
OSCC, with its area less than 2.8% of the tumor area. 
However, in a few cases, the proportion could reach 

Fig. 3 DEGs and functional analyses. (A, B) Heatmap (A) and volcano map (B) of DEGs between the TLS- OSCC group and the normal group. (D, E) 
Heatmap (D) and volcano map (E) of DEGs between the TLS + OSCC group and the normal group. (C) Venn diagram of 69 identified TLSRGs. (F) GO and 
KEGG analyses
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4–6%. This suggests that the patch- or tile-based 
approaches for image analysis used in many studies 
are inappropriate, which may lead to misestimation 
of the presence of TLSs. Zeng et al. [15] reported that 
the percentage of TLS-positive breast ductal carcino-
mas was 24.7%, which is significantly different from 

Table 2 Three key TLSRGs were selected after step Cox 
regression analysis
TLSRGs Coefficient
CD86 0.3169
CXCR5 -1.3345
CCR7 -0.2974

Fig. 4 Establishment of the three-gene risk score model. (A) Eleven TLSRGs strongly associated with the OS of OSCC patients. (B) The optimal result for 
11 TLSRGs according to LASSO regression. In the upper plot, each curve represents the change trajectory of the coefficient of each variable. L1 Norm 
representing the sum of the absolute values of all nonzero coefficients, and the upper X-axis represents the number of nonzero coefficients in the model. 
In the lower plot, the upper X-axis represents the number of variables remaining in the equation for different λ. The Y-axis represents the partial likelihood 
deviance, and a smaller Y value indicates a better fit of the equation. The vertical dotted lines are drawn at the optimal values using the minimum (left) 
and 1-SE criteria(right). (C) The distribution of risk score in OSCC patients. (D) Survival status according to the risk score. (E) Heatmap of the three TLSRGs 
in the high- and low-risk groups. (F) K-M plot of OSCC patients in the low- and high-risk groups. (G) ROC analysis of the risk score model predicted OS. 
AUC: area under the curve
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Fig. 5 Correlations between the prognostic model and clinical data. (A-C) K-M plots of OSCC patients in groups with different expression levels of the 
three TLSRGs. (D-G) Correlations between the expression levels of CCR7, CXCR5, CD86, risk score, and clinical parameters. LN+, positive lymph node me-
tastasis; LN-, no lymph node metastasis
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the 60.3% reported in a Korean study [35]. Wirsing’s 
study revealed that analyzing a single level in OSCC 
tissue blocks failed to detect approximately one-third 
of TLS + patients [36]. Most previous studies have used 
multiplex immunohistochemistry (mIHC) or immuno-
fluorescence (mIF) approaches to detect TLSs [37, 38]. 
Despite the potential of mIHC and mIF approaches for 
providing detailed cellular insights, their adoption in 
clinical settings is restricted by their prohibitive costs 
and operational complexity. Conversely, HE staining 
stands as the cornerstone of histopathological analy-
sis due to its affordability and widespread availability, 
offering a practical alternative for routine examina-
tions. TLSs vary greatly in size, density, maturity, and 
distribution, and the evaluation of TLSs is affected 
by pathologists’ experience [39, 40]. Manual assess-
ment is labor-intensive, relies on expertise, and often 
yields poor reproducibility. Therefore, we believe that 
it is more reliable and standardized to use the CNN to 
identify TLSs on HE-stained WSIs at multiple levels.

Research indicates that the presence of mature TLSs 
is positively correlated with enhanced OS and DFS 
among patients with early-stage OTSCC [20]. OSCC 
patients without TLSs have a poorer prognosis than 
those with TLSs [21]. Similarly, we found that the 
presence of TLSs was a positive factor for OS and DFS 
and was an independent prognostic factor for OSCC. 
OSCC patients with FL2 generally had longer over-
all survival than those without FL2, but there was no 
significant difference in DFS between the two groups. 
In OSCC, the predictive value of the TLS area ratio is 
better than that of maturity. Patients with a high TLS 
area have a favorable prognosis.

Despite these advancements, validated molecular 
markers linked to TLSs that can consistently predict 
the prognosis of OSCC patients are lacking. Through 
a comparison of sequencing data from TLS + and TLS- 
OSCC tissues, we identified 69 TLSRGs, which were 
mainly enriched in the chemokine-mediated signaling 
pathway, regulation of dendritic cell antigen processing 

Fig. 6 Correlations between TLSs, risk score, and immune cell infiltration. (A) Comparison of the abundance of infiltrating immune cells in the TLS + and 
TLS- groups. (B) Correlation between the ratio of the TLS area and immune cell infiltration. (C) Correlation between the risk score and immune cell 
infiltration
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and presentation, and cytokine-cytokine receptor 
interaction. Based on the abundance of chemokines 
and cytokines expressed in TLSs, some studies have 
established the disease-specific gene signatures to 
assess the presence of TLSs in tumors [14, 27]. Liu et 
al. [19] propose a 13-gene signature to assess the level 
of TLSs in HNSCC and these selected genes partially 
overlap with our screening results. In our research, 
CCR7, CXCR5, and CD86 were identified by LASSO 

regression and stepwise Cox regression analysis, and a 
prognostic model was constructed.

CXCR5 and CCR7 play pivotal roles in lymphoid 
organogenesis and the preservation of lymphoid tissue 
architecture, orchestrating the migration of lympho-
cytes and dendritic cells (DCs) to secondary lymphoid 
structures [41]. CCR7 is highly expressed on some 
CD4 + T cells, B cells, and DCs, which migrate to the 
T-cell zone via CCL19 and CCL21. DCs introduce 

Fig. 7 The protein expression of three TLSRGs in clinical samples. (A) Immunohistochemical results of CCR7, CXCR5, and CD86 in the normal group, TLS- 
OSCC group, and TLS + OSCC group. (B-D) The percentage of CCR7-, CXCR5-, CD86-positive cells in the normal group, TLS- OSCC group, and TLS + OSCC 
group
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antigens to uninitiated T cells, facilitating the transfor-
mation of naive CD4 + T cells into follicular helper T 
cells (Tfh cells), which are essential for adaptive immu-
nity [42]. The expression of the chemokine recep-
tor CXCR5 on Tfh cells gradually increases, and the 
expression of CCR7 decreases [43].

CXCR5, which is predominantly expressed on B 
cells, Tfh cells, and mature DCs, plays a crucial role in 
cell migration [44–46]. Its likely sole ligand, CXCL13, 
is expressed by follicular dendritic cells (FDCs) and 
various stromal cells situated in the B-cell regions 
of secondary lymphoid organs [47, 48]. Tfh cells and 
B cells with high CXCR5 expression migrate to the 
B-cell zone through CXCL13 [43]. B cells and Tfh 
cells engage with FDCs to foster the germinal center 
reaction, which leads to the evolution of B cells into 
memory B cells and enduring plasma cells [49]. TLSs 
are structurally and functionally similar to secondary 
lymphoid organs [6] and are the site of effector T cell, 
memory T cell as well as B cell differentiation [50]. 
Therefore, we hypothesize that CXCR5 and CCR7 play 
similar roles in TLSs, such as recruiting immune cells 
and promoting TLSs formation.

Primarily located on antigen-presenting cells, CD86 
serves as a crucial ligand for CD28 and CTLA-4, which 
are found on the surface of T cells [51]. The interac-
tion of CD86 with CD28 stimulates T cell activation, 

while the interaction of CD86 with CTLA-4 suppresses 
T cell activation and decreases the immune response 
[52, 53]. According to previous studies, CTLA-4 has a 
greater binding affinity for CD86 than for CD28, and 
the CTLA-4-CD86 interaction counteracts the CD86-
CD28 interaction, leading to immune suppression [54, 
55].

Our research revealed a significant correlation 
between TLSs and the presence of B cells, CD4 + T 
cells, CD8 + T cells, and macrophages in OSCC, high-
lighting their potential role in the tumor microen-
vironment. A rise in the percentage of TLS area was 
favorably connected with immune cell infiltration, 
although it was adversely correlated with the risk 
score. The upregulation of CCR7 and CXCR5 and 
the downregulation of CD86 and the risk score were 
negatively correlated with lymph node metastasis, 
indicating a better prognosis. These findings indicate 
that the presence of TLSs is negatively correlated with 
lymph node metastasis and predicts a better prog-
nostic outcome. Our findings are supported by other 
literature. According to the Human Protein Atlas 
[56], high CCR7 expression is associated with a bet-
ter prognosis in OSCC patients [57]. In melanoma, 
CCR7 + DCs play a key role in trafficking tumor anti-
gens to lymphoid tissues and activating T cells [58]. 
Zhang et al. reported that CXCR5 + CD4 + Tfh cells 

Fig. 8 Establishment of the prognostic nomogram model. (A) The nomogram model. Left, key variables affecting the prognosis; top, Points represent the 
value range of the variables; bottom, Total points represent the total score of the corresponding individual scores added after all variables are valued. The 
Pr(futime > 5) indicates that the 5-year survival probability predicted from the patient’s total score (276) is 0.0824. (B) Calibration curve of the nomogram 
model
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play a pivotal role in developing and sustaining TLSs 
and are associated with a good prognosis in HNSCC 
patients [16]. Wang et al. confirmed that high levels of 
CXCR5 + CD8 + T cells correlate with improved OS in 
gastric cancer patients [59]. Upregulation of CTLA4 
is an important immunosuppressive mechanism in 
HNSCC [60]. Wakasu and Zhang et al. reported that 
patients with mature TLSs have a significantly lower 
incidence of lymph node metastasis [12, 61].

We propose that TLSs distributed in tumors are 
on the front line of antitumor immunity. A high TLS 
area ratio and maturity indicate strong antitumor 
immunity. When the strength of antitumor immunity 
around highly malignant tumors is weak, the inci-
dence of lymph node metastasis is greatly increased. 
However, some studies suggest that cancer cells can 
metastasize to lymph nodes by upregulating CCR7 
expression [62], leading to a worse prognosis [63–65]. 
Two opposite effects of CCR7 have been reported in 
different cancer studies, and one possible explanation 
is that the changes in the tumor microenvironment 
alter the effect of CCR7. In the early stage of cancer, 
a small minority of CCR7 + tumor cells migrate to 
lymph nodes, where they may play a role in presenting 
tumor antigens and activating immunity. With tumor 
progression, alterations in the microenvironment may 
facilitate the colonization of CCR7 + tumor cells in 
lymph nodes. Second, the heterogeneities of tumors 
at various sites are large, and the interactions between 
immune cells and tumors are complex. A single indi-
cator cannot accurately predict the prognosis of all 
cancers, so it is necessary to combine multiple indica-
tors to make a more accurate prediction. To a certain 
extent, these findings validate the appropriateness of 
selecting these three TLSRGs to construct a prognostic 
model. We further confirmed the prognostic model’s 
effectiveness in clinical applications at the tissue level 
by performing immunohistochemical staining of three 
TLSRGs. Finally, routine clinical parameters were inte-
grated into the risk score model, and the nomogram 
model was constructed to enhance the specificity of 
individual prognosis prediction.

Our study has several limitations. First, it is impor-
tant to note that the results primarily rely on the 
TCGA dataset and require further validation in addi-
tional databases. Some individuals had received 
immune or targeted treatments, which influenced the 
prognosis analysis. Although the three TLSRGs were 
validated in clinical samples, the biological functions 
of these genes in OSCC necessitate further verification 
through experiments, and expanding the sample size 
would be beneficial.

Conclusions
At present, only a few studies have demonstrated that 
TLSs can act as the prognostic biomarker and the pre-
dictor of immunotherapy efficacy in OSCC patients. 
Many different markers, which cannot be widely used 
in clinical practice, have been used to characterize 
TLSs. Compared to previous studies, this study offers 
the following advantages: ① it used the CNN to accu-
rately identify TLSs and underscores the potential of 
integrating advanced image analysis techniques in 
oncological prognostication; ② it explored the rela-
tionships between TLSs, lymph node metastasis, and 
immune infiltration; and ③ it is the first OSCC nomo-
gram prediction model based on TLSRGs, which can 
be used as a supplementary indicator of the progno-
sis in OSCC patients. Its use may be related to further 
refinement of the current staging system and improve-
ment of risk stratification.
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