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Abstract 

The tertiary lymphoid structure (TLS) is recognized as a potential prognosis factor for breast cancer and is strongly 
associated with response to immunotherapy. Inducing TLS neogenesis can enhance the immunogenicity of tumors 
and improve the efficacy of immunotherapy. However, our understanding of TLS associated region at the single-
cell level remains limited. Therefore, we employed high-resolution techniques, including single-cell RNA sequenc-
ing (scRNA-seq) and spatial transcriptomics (ST), and a TLS-specific signature to investigate TLS associated regions 
in breast cancer. We identified eighteen cell types within the TLS associated regions and calculated differential expres-
sion genes by comparing TLS associated regions with other areas. Notably, macrophages in the TLS associated regions 
exhibit lineage transformation, shifting from facilitators of immune activation to supporters of tumor cell growth. In 
terms of cell–cell communication within the TLS associated regions, KRT86+ CD8+ T cells, HISTIH4C+ cycling CD8+ 
T cells, IFNG+ CD8+ T cells, and IGKV3-20+ B cells demonstrate strong interactions with other cells. Additionally, we 
found that APOD+ fibroblast and CCL21+ fibroblast primarily recruit T and B cells through the CXCL12-CXCR4 ligand-
receptor signaling pathway. We also validate these findings in four independent breast cancer datasets, which include 
one cell-level resolution dataset from the 10 × Xenium platform and three spot-level datasets from the 10 × Visium 
platform.
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Introduction
Breast cancer can be classified into three clinically rele-
vant subtypes: luminal (characterized by the expression 
of estrogen receptor [ER] and/or progesterone receptor 
[PR]), human epidermal growth factor receptor-2 posi-
tive (HER2 +), and triple-negative breast cancer (TNBC), 
which lacks the expression of ER, PR, and HER2 [1]. Ben-
efit for the development of diverse treatment methods, 
most early breast cancer patients experience prolonged 
survival following treatment [2]. However, for patients 
with highly malignant breast cancer, more effective treat-
ment options are still needed [3, 4].

Recently, immunotherapy has been shown to extend 
survival in various types of cancers [5, 6]. According to 
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previous studies, patients with higher levels of lympho-
cyte infiltration tend to benefit more from adjuvant or 
neoadjuvant chemotherapy and immunotherapy, result-
ing in longer progression-free survival (PFS) and overall 
survival (OS) [7]. However, breast cancer is not generally 
considered a highly immunogenic disease, among the 
subtypes, only HER2+ and TNBC patients exhibit higher 
levels of lymphocyte infiltration and are more likely to 
benefit from immunotherapy [8]. Therefore, the immune 
therapy outcomes vary significantly.

Tertiary lymphoid structures (TLSs) have emerged as 
novel predictors and facilitators of anti-tumor immune 
activity [9]. Notably, TLSs enhance immune activity 
within the tumor microenvironment and are strongly 
correlated with clinical benefits in breast cancer patients 
[10]. Additionally, TLSs promote lymphocyte infiltra-
tion and facilitate T-cell activation by enhancing tumor 

antigen presentation [11]. Over the past decades, TLSs 
have been primarily studied using immunohistochem-
istry (IHC)-based technologies, which provide only lim-
ited information. Thus, there is a pressing need for using 
high-resolution approaches to better understand TLS 
regions. By integrating scRNA-seq and spatial transcrip-
tomics (ST), it is possible to obtain high-resolution data 
on the cells and tissues within TLSs.

In this study, we leveraged ST and scRNA-seq datasets 
from Wu et  al. to investigate the cellular components, 
macrophage transformations, and cell–cell communica-
tions within TLS associated region [12]. And to validate 
findings in other independent datasets, which include one 
cell-level resolution dataset from the 10 × Xenium plat-
form and three spot-level datasets from the 10 × Visium 
platform, Fig. 1a indicates the workflow of this study. This 
study provides foundational knowledge of TLS associated 

Fig. 1  The workflow of the study and major cell types in the TLS associated regions. a First, we downloaded the processed data of 26 scRNA-seq 
datasets and four spatial transcriptome datasets of breast cancer patients. Next, we validated 12-chemokines signature reported in a previous study, 
which has the ability to predict TLS regions in breast cancer. We then used this signature to calculate the TLS score of cells in these 26 scRNA-seq 
datasets, extracting high TLS-score cells for further analysis. Then, we annotated these extracted cells, calculated the differential expression genes 
between high TLS-score cells and low TLS-score cells, analyzed the macrophage lineage trajectory in the TLS associated regions, and cell–cell 
communications in the TLS associated region. b The UMAP plot presents the major cell types in the TLS associated regions, which includes four 
types of CD8+ T cells, five types of macrophages, two types of dendritic cells, fibroblasts, and five other cell types. c The highest expression genes 
in each cell type, with gene labels displaying the top six average log2 fold change (log2FC) genes for each cell type
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region that may contribute to the development of novel 
immune therapeutic strategies or serve as an adjunct to 
enhance the efficacy of existing immunotherapies.

Materials and methods
Data acquisition
The s scRNA-seq datasets of 26 breast cancer sam-
ples (GSE176078) were obtained from the GEO data-
base (https://​www.​ncbi.​nlm.​nih.​gov/​geo). This dataset 
includes samples from 11 ER+, 5 HER2+, and 10 TNBC 
patients [13]. Corresponding spatial transcriptomics 
data for four patients were retrieved from the Zenodo 
data repository (https://​doi.​org/https://​doi.​org/​10.​
5281/​zenodo.​47397​39). Additionally, Xenium breast 
cancer patient data were acquired from the following 
link: https://​www.​10xge​nomics.​com/​produ​cts/​xenium-​
in-​situ/​previ​ew-​datas​et-​human-​breast. The data from 
three breast cancer samples using the Visium platform 
are available at these links or through GEO accession: 
https://​www.​10xge​nomics.​com/​datas​ets/​human-​breast-​
cancer-​block-a-​secti​on-1-​1-​stand​ard-1-​0-0, https://​www.​
10xge​nomics.​com/​datas​ets/​human-​breast-​cancer-​block-
a-​secti​on-2-​1-​stand​ard-1-​0-0, GSM6177599. The RNA 
sequencing datasets of TCGA breast cancer patients 
were extracted from the University of California Santa 
Cruz (UCSC) Xena (https://​xena.​ucsc.​edu/) database, 
along with clinical information. This dataset comprised 
1,211 tumor samples and 113 normal samples. After fil-
tering out unpaired and duplicate data, we retained 1,076 
tumor samples.

Quality control of single‑cell RNA sequencing and spatial 
transcriptome data
Quality control was performed on the 26 single-cell RNA 
sequencing datasets using Seurat (version 4.0.1). Cells 
with fewer than 500 unique molecular identifiers (UMIs) 
and those with mitochondrial gene percentages exceed-
ing 20% were filtered out. To eliminate batch effects 
among patients and normalize the data, we employed 
the CCA and the IntegrateData function in Seurat. For 
the Xenium spatial transcriptome data, genes with total 
counts below 10 and cells with fewer than 10 counts were 
filtered using stLearn (version 0.4.9).

Calculate the TLS‑score of each cell and each spot
We use a 12-chemokine signature through the AddMod-
uleScore function in Seurat to calculate the TLS score for 
the 26 scRNA-seq datasets and four spatial transcriptome 
datasets. A cut-off of TLS score > 0.5 was established for 
further analysis of high TLS score regions. Ultimately, we 
identified 8,506 cells that likely represent the majority of 

TLS associated cells, with three patients’ breast cancer 
tissues showing possible high TLS infiltration.

Cell clustering and annotation of cell types
Using PCA, JackStraw, and ScoreJackStraw functions 
in Seurat, we identified the principal components of 
genes representing each cell type in the TLS. We then 
employed the KNN algorithm along with UMAP (Uni-
form Manifold Approximation and Projection) for 
dimensionality reduction to identify major cell groups. 
Specific expression genes for each cell group were cal-
culated using the FindAllMarkers function in Seurat. 
Major cell types were annotated based on marker genes 
from the CellMarker database and our own gene col-
lections. For the Xenium spatial transcriptome, we 
preprocessed the h5 file data in stLearn and fine-tuned 
Geneformer on our annotated 18 cell types in TLS-
associated regions to facilitate accurate cell type dis-
tinction. We then used the fine-tuned Geneformer to 
calculate similarity between cells in the Xenium data-
set and the 18 TLS-associated cell types for inference 
of cell identities. For cell type deconvolution of Visium 
platform data, we applied CARD to deconvolute the 18 
cell types in spatial transcriptome data.

Differential gene expression analysis
Differential expression of genes between TLS regions 
and other regions was assessed using the Wilcoxon 
test, with a significance level defined as FDR (adjusted 
p-value) < 0.05. This analysis identified 61 genes that 
were lowly expressed and 78 genes that were highly 
expressed in the TLS regions.

Gene ontology enrichment analysis
We utilized ClusterProfiler [14] (version 4.14.4) to 
conduct gene ontology analysis of the differentially 
expressed genes, with significance set at p-value < 0.05.

Specific marker genes of each cell type in the TLS 
associated cells
Using the FindAllMarkers function in Seurat, we cal-
culated the representative genes for each cell type. We 
selected the top 30 genes based on average log2 fold 
change (log2FC) for each cell type, ensuring that the 
selected gene expression proportion in each cell type 
was less than 60% while not exceeding 60% in other cell 
types. The remaining genes were designated as specific 
marker genes for each cell type.

https://www.ncbi.nlm.nih.gov/geo
https://doi.org/
https://doi.org/10.5281/zenodo.4739739
https://doi.org/10.5281/zenodo.4739739
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/datasets/human-breast-cancer-block-a-section-1-1-standard-1-0-0
https://www.10xgenomics.com/datasets/human-breast-cancer-block-a-section-1-1-standard-1-0-0
https://www.10xgenomics.com/datasets/human-breast-cancer-block-a-section-2-1-standard-1-0-0
https://www.10xgenomics.com/datasets/human-breast-cancer-block-a-section-2-1-standard-1-0-0
https://www.10xgenomics.com/datasets/human-breast-cancer-block-a-section-2-1-standard-1-0-0
https://xena.ucsc.edu/
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Survival analysis of each cell type in TLS associated regions 
with TCGA breast cancer cohort
The ssGSEA [15] method was employed to estimate the 
proportion of immune cells in TCGA BRCA patients 
using the specific marker genes identified for each cell 
type. The Kaplan–Meier method was used for survival 
analysis, with p-values calculated via the log-rank test.

Lineage trajectory analysis of macrophages in TLS 
associated regions
Monocle2 [16] (version 2.12.0) was used to analyze the 
pseudo-lineage trajectory of macrophages in the TLS 
associated regions. We first extracted the macrophage 
cell groups and created a newCellDataSet object in 
Monocle2 with the negative binomial size as the expres-
sion family. The macrophage trajectory direction was 
determined based on survival analysis results. Differ-
ential genes along the lineage trajectory were selected 
based on average log2FC, p-value, and expression pro-
portion in each cell type, with criteria of log2FC > 1, 
p-value < 0.0001, and expression in at least 70% of cells of 
each type.

Cell–cell communication analysis
CellChat [17] (version 1.5.0) is an R-based computational 
tool that allows us to examine cell-to-cell communica-
tion. To analyze the communications among high TLS 
score cells, we first calculate the communication weight 
among each cell type, then assessed the communication 
strength across all signaling pathways in the CellChat 
database. For the spatial transcriptome, we employed 
stLearn to analyze specific ligand-receptor communica-
tion strength.

Result
Characterization of cellular components in tertiary 
lymphoid structure associated regions and their 
prognostic impact in breast cancer
TLSs are organized cellular aggregates located directly 
at tumor sites, resembling secondary lymphoid organs 
[18]. TLSs typically consist of a T cell-rich zone contain-
ing mature dendritic cells (DCs), juxtaposed with a B cell 
follicle exhibiting germinal center characteristics, and are 
surrounded by plasma cells. This structure has the poten-
tial to promote lymphocyte infiltration into tumor tissue 
[19]. Recent studies have shown that TLSs are associated 
with improved prognosis in TNBC and HER2 + breast 
cancer patients [20, 21].

To investigate the cellular components and cell–cell 
communications within TLS, we utilized Prabhakaran 
et al.’s 12-chemokine gene signature [22] to calculate TLS 
scores in ST datasets from four breast cancer patients 
(Supplementary Fig.  1a). By integrating the TLS scores 

with the corresponding patients’ H&E-stained images, we 
confirmed that the 12-chemokine gene signature effec-
tively predicts TLS associated regions. This finding high-
lights the potential of the gene signature as a valuable tool 
for evaluating the cells whether belong to TLS associated 
regions. Therefore, we applied this gene signature to cal-
culate TLS scores for pre-processed single cells from Wu 
et  al.’s dataset of 26 breast cancer patients. When com-
paring TLS scores across the three breast cancer sub-
types, we observed that TNBC and HER2 + patients had 
higher TLS scores than ER + patients, which is consist-
ent with previous studies (Supplementary Fig. 1b). Next, 
we extracted cells with TLS scores greater than 0.5 from 
the scRNA-seq datasets of the 26 breast cancer patients. 
We re-clustered these cells and annotated them into 18 
groups based on specific cell markers (Fig. 1b, c). These 
groups primarily consisted of two types of fibroblasts 
(APOD+ fibroblast and CCL21+ fibroblast), five types 
of macrophage (APOC1+ macrophage, CXCL10+ mac-
rophage, APOE+ macrophage, SEPP1+ macrophage, 
SPP1+ macrophage), six types of T cells (CCL4L2+ CD8+ 
T cells, KRT86+ CD8+ T cells, IL7R+ regulatory T cells, 
IFNG+ CD8+ T cells, HISTIH4C+ cycling CD8+ T cells, 
CXCL13+ Follicular helper (Tfh) T cell), and two types 
of dendritic cells (NEAT1+ dendritic cells and CCL3L3+ 
dendritic cells). The remaining cell types included 
IGFBP7+ endothelial cells, GNLY+ NK cells, and IGKV3-
20+ B cells (Fig.  1b, c). Finally, we applied the ssGSEA 
method with specific highly expressed marker genes of 
these cells to infer their infiltration in TCGA-GDC breast 
cancer patients and analyzed the impact of these immune 
cells on patient survival. We found high infiltration of 
CXCL10+ macrophage, CCL21+ fibroblasts, CXCL13+ 
Follicular helper (Tfh) T cells, GNLY+ NK cells, IFNG+ 
CD8+ T cells, IGKV3-20+ B cells, IL7R+ regulatory T 
cells, KRT86+ CD8+ T cells, and NEAT1+ dendritic cells 
was significantly associated with better prognosis in 
breast cancer patients (Supplementary Fig. 2a-r).

Differentially expressed genes of cells in TLS associated 
regions compared to other regions
To gain insights into differentially expressed genes 
of cells in TLS associated regions compared to other 
regions, we calculated the differential expression of genes 
between TLS high-score and TLS low-score cells. Inter-
estingly, CCL4L2, CCL3, CXCL10, CCL19, CCL5, and 
CCL3L3 are the top six chemokines highly expressed 
in the TLS associated regions, while CD24, MUCL1, 
and MGP are lowly expressed. Notably, CCL4L2, CCL3, 
and CXCL10 are key chemokines that have been linked 
to inflammatory responses and T cell recruitment [23, 
24] (Fig.  2a). Furthermore, gene ontology (GO) enrich-
ment analysis revealed that the highly expressed genes in 
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TLS associated cells are predominantly involved in bio-
logical processes such as regulation of defense response, 
cytolytic granule activity, cellular response to inter-
feron-gamma, chemokine-mediated signaling pathways, 
antigen processing and presentation, regulation of T cell 
chemotaxis, and positive regulation of T cell activation 
(Fig. 2b). In contrast, GO analysis of the low-expression 
genes in the TLS associated regions revealed enrich-
ment in processes such as positive regulation of growth, 
positive regulation of cell migration, and blood vessel 
development. These findings clearly indicate that the 
highly expressed genes in the TLS associated regions are 
strongly associated with immune activity. We propose 
that these differentially expressed genes are key compo-
nents in the formation and functional regulation of TLS 
associated regions. A deeper understanding of these 
genes could accelerate the development of strategies to 
induce TLS associated regions neogenesis in immune-
compromised tumors, ultimately improving immuno-
therapy outcomes.

Macrophage transformation and functional dynamics 
within TLS associated regions
Survival analysis of immune cells in the TLS associated 
regions indicate that CXCL10+ macrophages are associ-
ated with a better prognosis in breast cancer compared 
with other types of macrophages (Supplementary Fig. 2a, 
c, g, q, r). Therefore, understanding the transforma-
tion of CXCL10 + macrophages into other macrophage 
subtypes is critical for uncovering the dynamic changes 
and the diverse functions of macrophages in the TLS 
associated regions. To investigate this process, we used 
the pseudo-time analysis method to study macrophage 
transformation. In the TLS associated regions, the mac-
rophage progress through five distinct states, transition-
ing primarily from CXCL10+ macrophages and APOE+ 
macrophages to APOC1+ macrophages and SEPP1+ 
macrophages. Notably, SPP1+ macrophages are present 
in only a small subset of patients and appear transiently 
during the middle stages of the transformation process 
(Fig. 3a, b). The functional roles of macrophages change 

Fig. 2  The differential expression genes between TLS associated and other cells. a The differential expression genes between TLS associated 
and other cells, the green text indicates low-expression genes in TLS associated cells, while the red text indicates high expression genes 
in TLS associated cells. b Gene ontology enrichment analysis of the differentially expressed genes is presented, with the upper plot showing 
the enrichment of GO biological processes for high-expression genes in TLS associated cells and the lower plot displaying the enrichment 
for low-expression genes

(See figure on next page.)
Fig. 3  The lineage trajectory of macrophages in the TLS associated regions. a The transformation of macrophage lineages in the TLS can 
be divided into two processes, transitioning from CXCL10+ macrophages and APOE+ macrophages to APOC1+ macrophages and SEPP1+ 
macrophages, with SPP1+ macrophages predominantly present in the intermediate stages. b The pseudo-time plot illustrates the temporal 
dynamics of macrophage differentiation. c High-expression genes at each stage of macrophage lineage transformation are shown, along with their 
enrichment in biological processes. d The expression levels of marker genes for these macrophage types change throughout the lineage 
transformation process
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Fig. 3  (See legend on previous page.)
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significantly during these state transitions. Initially, 
macrophages are involved in processes such as positive 
regulation of defense response, positive regulation of 
inflammatory response, and leukocyte aggregation. As 
they transition, their functions shift toward regulation of 
angiogenesis and negative regulation of T cell prolifera-
tion (Fig. 3d).

Cell–cell communication in the TLS associated regions
To investigate the communication network and mecha-
nisms driving the recruitment of cells—particularly T 
and B cells—into the TLS associated regions, we used 
CellChat, an R-based tool for analyzing cell–cell commu-
nication. Notably, we observed that KRT86+ CD8+ T cell, 
HISTIH4C+ cycling CD8+ T cell, IFNG+ CD8+ T cell, 
and IGKV3-20+ B cell exhibited stronger connections 
with other cells, suggesting that these cells play key roles 
in the TLS associated regions (Supplementary Fig.  3). 
When analyzing the signaling pathways active in the TLS 
associated regions, we focused on the CXCL signaling 
pathway, which plays a central role in cell recruitment 
[23, 24], we found that CCL21+ fibroblasts and APOD+ 
fibroblasts were highly communication with other cell 
types, particularly T and B cells, which indicates that the 
recruitment of T cells (CCL4L2+ CD8+ T cell, KRT86+ 
CD8+ T cell, IFNG+ CD8+ T cell, HISTIH4C+ cycling 
CD8+ T cell), B cells (IGKV3-20+ B cell) were primarily 
mediated by these two fibroblast subtypes(Fig. 4a).

To further understand the main receptor-ligand inter-
actions between CCL21+ fibroblast, APOD+ fibroblast, 
and T/B cells, we analyzed the signal intensity of the 
receptor-ligand pairs in the CXCL signaling pathway. The 
results revealed that the CXCL12-CXCR4 ligand-recep-
tor pair exhibited the stronger signal intensity, which 
suggests that these two types of fibroblasts primarily 
recruit KRT86+ CD8+ T cells, IL7R+ regulatory T cells, 
IGKV3-20+ B cells, IFNG+ CD8+ T cells, CXCL13+ fol-
licular helper (Tfh) T cells and HISTIH4C+ cycling CD8+ 
T cells through this ligand-receptor interaction (Fig. 4b). 
For further validating our findings regarding TLS-associ-
ated regions, we utilized four independent spatial tran-
scriptomics datasets from breast cancer patients. One 
dataset consists of single-cell resolution sequencing data 
from the Xenium platform, while the other three data-
sets are from the Visium platform. These datasets allow 
us to directly obtain the spatial locations of cell types or 
infer their positions using deconvolution algorithms, and 
they also enable us to assess the strength of the CXCL12-
CXCR4 ligand-receptor interaction in a spatial context. 
Each platform has its advantages: the Xenium platform 

provides spatial distribution data at the single-cell level 
but measures a limited number of genes—specifically, 
only 313 in the dataset we used. In contrast, the Visium 
platform measures a large number of genes, but at a 
lower resolution, typically capturing multiple cells within 
a single spot. Combining data from these two platforms 
allows for better validation of our findings. To assess the 
similarity of these cells to the 18 types of TLS-associated 
cells we annotated (i.e., to infer cell types), we leveraged 
the strengths of a single-cell large language model, Gen-
eformer [25], for semantic understanding cellular fea-
tures. After fine-tuning Geneformer on our annotated 18 
cell types in TLS-assiocated regions, we used this model 
to predict the similarity of single cells measured by the 
Xenium platform to the 18 types of TLS region cell types, 
thereby inferring their identities. We found that there 
are CCL21+/APOD+ high-expressing fibroblast cells 
(Fig.  5a-b) in the TLS regions (annotated by patholo-
gists). Additionally, we employed stLearn to calculate the 
spatial communication intensity of the CXCL12-CXCR4 
ligand-receptor pair (Fig. 5c). Our analysis revealed that 
CXCL12-CXCR4 exhibited significantly higher com-
munication intensity in these regions compared to oth-
ers, further supporting our findings. Furthermore, using 
the annotated single-cell data from the 18 types of TLS-
associated cells, we applied deconvolution to the spots 
in the other three Visium datasets. We discovered that 
CCL21+/APOD+ high-expressing fibroblast cells are pre-
sent within or near the TLS regions (Fig.  6a-c, Supple-
mentary Fig.  4–6), and the communication intensity of 
the CXCL12-CXCR4 receptor-ligand pair is significantly 
higher than in other areas (Fig. 6a-c). These independent 
validation sets enhance the credibility of our main find-
ings and provide a theoretical basis for developing novel 
strategies to improve the immunogenicity of low-immu-
nogenicity breast cancer patients, ultimately enhancing 
tumor immunotherapy in the future.

Discussion
It has been discovered that breast cancer patients who 
respond to immunotherapy often have cancer tis-
sues infiltrated by a high proportion of TLSs [26, 27]. 
Numerous studies have shown that high TLS infiltra-
tion is associated with improved patient prognosis 
[20, 21]. Therefore, further research on TLS is crucial 
for understanding why it performs such functions and 
how to induce it to promote immunotherapy. Consid-
ering that TLS, as a functional structural region, is dif-
ficult to analyze with conventional techniques, and that 
high-precision analysis of TLS is urgently needed, we 
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Fig. 4  Cell–cell communications in the TLS associated regions. a The strength of the CXCL signaling pathway among each cell type 
in the TLS-associated regions. b Ligand-receptor analysis of the CXCL signaling pathway between fibroblasts and T/B cells is presented
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focused on this in our study. We utilized breast can-
cer scRNA-seq data, spatial transcriptome data and 
a TLS-specific gene signature to investigate cells in 
the TLS associated regions, identify differential genes 
between these regions and others, analyze the mac-
rophage lineage trajectory, and explore cell communi-
cation within the TLS. Our findings indicate that there 

are approximately 18 distinct cell types in the TLS-
associated regions, and that macrophages in these areas 
undergo significant lineage and functional transforma-
tions. The recruitment of T cells and B cells is critical 
to the formation of TLS-associated regions [19], our 
multiple lines of evidence shows that two types of fibro-
blasts (CCL21+ fibroblast, APOD+ fibroblast) play a key 

Fig. 5  Predicted cell types and CXCL12-CXCR4 ligand-receptor pair communication strength in Xenium breast cancer data. a The cell types 
in Xenium breast cancer dataset were predicted using Geneformer, which was trained on our annotated 18 cell types; the white box highlights 
enlarged TLS regions. b The H&E image slice of the Xenium breast cancer dataset, with TLS regions annotated by a pathologist indicated by the red 
circle. c The communication strength of the CXCL12-CXCR4 ligand-receptor pair
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role in this process, primarily through the CXCL12-
CXCR4 ligand-receptor pair to recruit T cells and B 
cells into TLS-associated regions. In immunotherapy, 
the benefit to breast cancer patients are closely related 
to the composition and activity of immune cells in their 
microenvironment. TLS serves as a potential structure 
that can enhance the immune activity of the tumor 
microenvironment [28]. Therefore, it is significant 
to utilize CCL21+/APOD+ fibroblasts, which highly 
express CXCL12 or CXCR4, to induce the infiltration of 

T and B cells into the low-immunogenic breast cancer 
microenvironment. This approach aims to increase the 
presence of new T/B cells or replace exhausted T cells, 
thereby improving the immune activity of the microen-
vironment in breast cancer patients. However, further 
experimental validation is needed to demonstrate the 
practicality of this strategy. In summary, these findings 
contribute to our understanding of the TLS associ-
ated regions in breast cancer and have implications for 
future applications in immunotherapy.

Fig. 6  Inferred CCL21+ fibroblast and CXCL12-CXCR4 ligand-receptor pair communication strength in Visium breast cancer data. a The H&E 
image of 10 × human breast cancer (Block A, Sect. 1), alongside the CXCL12-CXCR4 ligand-receptor communication strength; the TLS region 
is annotated by a pathologist and indicated by the red circle. b The H&E image of 10 × human breast cancer (Block A, Sect. 2), with CXCL12-CXCR4 
ligand-receptor communication strength, the TLS region is highlighted in red as annotated by a pathologist. c The H&E image of GSM6177599 
and the CXCL12-CXCR4 ligand-receptor communication strength, the TLS region is indicated by a red circle annotated by a pathologist
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Additional file 1: Fig.1 The performance of the 12-chemokine signature in 
predicting TLS associated regions (a) Using the 12-chemokine signature 
calculates the TLS score, which is distributed across the patients’ tissue 
slides. (b) The proportions of major cell types within the TLS of each 
patient and across different subtypes of patients are presented. (c) A com-
parison of TLS scores among the various subtypes of breast cancer.

Additional file 2: Fig.2 Survival analysis of cells in the TLS associated 
regions (a-r) Using specific marker genes of each cell type to calculate 
infiltration score of each cell type in the TCGA BRCA cohort. Survival analy-
sis was then conducted to assess the impact of each cell type on patients’ 
survival time, with p-values calculated using the log-rank test.

Additional file 3: Fig.3 Cell-cell communications in the TLS associated 
regions The weights of cell-cell communications in the TLS associated 
regions were analyzed using the CellChat package, and the heatmap was 
showing the communication strength.

Additional file 4: Fig.4 Inferred cell proportions of 18 cell types in the 10x 
human breast cancer Block A, Section1 The proportion of 18 cell types 
in the10x human breast cancer Block A section1 spatial transcriptome 
dataset.

Additional file 5: Fig.5 Inferred proportions of 18 cell types in 10x human 
breast cancer Block A section2 The proportion of 18 cell types in 10x 
human breast cancer Block A section1 spatial transcriptome dataset.

Additional file 6: Fig.6 Inferred proportions of 18 cell types in GSM6177599 
The proportion of 18 cell types in GSM6177599 spatial transcriptome 
dataset.
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