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EMT‑driven plasticity prospectively increases 
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Abstract 

Cellular plasticity enables cancer cells to adapt non-genetically, thereby preventing therapeutic success. The epithe-
lial-mesenchymal transition (EMT) is a type of plasticity linked to resistance and metastasis. However, its exact impact 
on population diversity and its dynamics under chemotherapy is unknown. We used single-cell transcriptomics 
to investigate phenotypic diversity dynamics upon treatment in two in vitro models of triple negative breast cancer 
(TNBC), where EMT-driven plasticity is either induced or spontaneously occurring. We report that EMT-driven plasticity 
confers higher phenotypic cell–cell variability (p < 0.001) while enriching for stem-like cells. Genetic and phenotypic 
cell–cell variability were not consistently correlated. High-plasticity populations displayed more pre-adapted cells 
before treatment (p = 0.03). In a population displaying spontaneous EMT and phenotypic variation, pre-adapted cells 
were a rare minority of high-scoring outliers whose expression patterns correlated with survival in TNBC patients sub-
jected to chemotherapy (p = 0.03). Higher plasticity was not associated with a partial EMT status. Our results provide 
novel insights on how EMT-driven plasticity promotes a prospective diversification process increasing population 
phenotypic diversity, which can yield rare pre-adapted states before treatment. This highlights the need to tackle 
phenotypic diversity prior to treatment in high-plasticity tumours.
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Introduction
Cellular plasticity is a non-genetic mechanism by which 
cells are able to adapt their phenotype to external pres-
sures and environmental changes, as well as to cell-
intrinsic stresses. This process has been known to foster 
resistance in cancer [1], and is now recognised as a can-
cer “hallmark” [2]. The epithelial-mesenchymal transition 
(EMT) is a particular form of plasticity, during which 
polarised and adherent epithelial cells acquire a more 
mobile mesenchymal phenotype. In addition to the facili-
tation of dispersal and metastasis [3], the EMT has been 
linked to the acquisition of stem-like cell features [4, 5], 
increased genomic stability [6] and drug resistance [7, 
8] in breast cancer. Partial EMT states, often described 
as hybrid [9], stable [10] or metastable [11], have been 
associated with increased plasticity. Patients with triple 
negative breast cancers (TNBC), which lack targetable 
alterations in the Her2, ER and PR genes, are presented 
with few therapeutic options and are thus particularly 
vulnerable to plasticity-mediated therapeutic resistance.

Phenotypic plasticity is a multifaceted process, whose 
characteristics and dynamics remain elusive. Key ques-
tions have been identified, including whether specific 
cell states provide high adaptability to the subpopula-
tion of cells in which they occur [12], or whether sys-
temic diversity-generating properties allow resistance to 
emerge [13]. Furthermore, although plasticity increases 
the adaptability of cancer cells by definition, it is still 
unknown whether this occurs through a prospective or 
reactive process, based on either transcriptional selec-
tion or adaptation [14] (Fig.  1). Under the prospective 
scenario, cells are more capable of generating different 
phenotypes in absence of external pressure, which can 
increase the likelihood of already adapted phenotypes 

in case of environmental change. Under the reac-
tive scenario, cells instead have an intrinsic capacity to 
dynamically adapt non-genetically once triggered by 
environmental change, without relying on an increased 
phenotypic diversity at the population level. Although 
different from one another, these two processes are how-
ever not necessarily mutually exclusive. Nevertheless, few 
data-driven approaches have yet provided answers to this 
complex question.

The availability of single-cell technology, that can 
nowadays provide multi-omics data on individual cells, 
allows accurate quantification of phenotypic diversity in 
a cell population. Here we used single cell transcriptom-
ics on in vitro TNBC models of EMT-driven plasticity to 
investigate how plasticity influences phenotypic diversity 
before and during chemotherapy, using cell-state agnostic 
measures. Our results suggest that plasticity promotes a 
prospective diversification process increasing population 
phenotypic diversity, which can yield rare pre-adapted 
states (cells that are by chance already able to adapt to 
a given environmental change that hasn’t occurred yet) 
before treatment. This in turn suggests that therapeutic 
strategies targeting cancer cell plasticity should focus on 
reducing phenotypic diversity, rather than preventing 
drug-triggered phenotypic switches.

Results
EMT+ status associated with lower genetic heterogeneity 
but higher phenotypic cell–cell divergence
We used human mammary epithelial cells (hMEC) in 
which HRASG12V-mediated oncogenic transformation 
and ZEB1-mediated epithelial-mesenchymal transition 
(EMT) can be exogenously induced, respectively via 
tamoxifen and doxycycline [6] (Fig.  2A, see Methods). 

Fig. 1  Types of plasticity-mediated resistance. In a prospective process (left), phenotypic diversity is generated prior to any selective pressure. Upon 
external pressure, adapted phenotypes can be selected. These adapted phenotypes can correspond to temporary cell states, and can occur in cells 
that aren’t necessarily closely related phylogenetically. In a reactive process (right), populations do not rely on heightened diversity, but on the 
inherent ability of cells to dynamically transition to a different state upon external pressure, potentially resulting in more adapted cell states
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After single-cell cloning, we obtained 2 types of iso-
genic organoid-like 3D cultures of hMECs, both trans-
formed via Ras activation but either in an EMT context 
(EMT+ , Zeb1-mediated) or in its absence (EMT-). 3D 
cultures from both conditions showed morphological 
differences, with EMT+ structures appearing larger and 
more sparsely spread in the plate (Fig. 2B, Supplementary 
Fig. 1). 2 replicates of each condition were then subjected 
to doxorubicin treatment, while 2 were left untreated (8 
individual experiments in total). In total, over 48K cells 
from these models were analysed using UMI-based single 
cell RNA sequencing (Supplementary Table 1).

We could identify three main clusters across all cells, 
whose expression of key markers MME (CD10), ITGA6 
(CD49f) and EPCAM corresponded to different states 
of the mammary differentiation cascade [6]: mammary 
stem cells (MaSC), luminal progenitors (LP) and mature 
luminal cells (mL) (Fig.  2C, D, Supplementary Fig.  2). 
We however importantly point out that cell classifica-
tions in transformed cells may not be as biologically rel-
evant as in well-regulated homeostatic contexts [15], 
and that this labelling should be interpreted with cau-
tion. Their distribution among replicate experiments 
highlights a very strong enrichment of the MaSC cluster 
in the EMT+ population, both before and after doxoru-
bicin treatment (Fig. 2E, p < 0.001, Fisher’s exact test). In 
terms of cellular identity, the EMT+ populations thereby 
demonstrated lower phenotypic diversity than the EMT- 
ones before and after treatment (Fig.  2F). In addition, 
EMT+ cells displayed a high enrichment of EMT signa-
tures, which was not impacted by treatment (Supplemen-
tary Fig. 3).

We harnessed relative copy number alteration (CNA) 
inference from single cell transcriptomics data to inves-
tigate genetic heterogeneity in our isogenic 3D cultures. 
We calculated Euclidean distances between each cell 
and the median CNA profile of each replicate, summa-
rised on a per-cytoband basis (Supplementary Fig. 4, see 
Methods). This revealed that genetic heterogeneity was 
lower in the EMT+ populations than in the EMT- ones 

(p < 0.001, two-tailed t-test, Fig.  2G, Supplementary 
Fig.  5A), in accordance with previous findings on the 
same models [6]. In addition, genetic cell–cell divergence 
increased after treatment in all replicates (all p < 0.001, 
two-tailed t-test). Similarly, we quantified phenotypic 
divergence using Euclidean distances to the mean tran-
scriptomics profile, which revealed that EMT+ cells 
displayed higher phenotypic divergence than the EMT- 
ones (p < 0.001, two-tailed t-test, Fig. 2H, Supplementary 
Fig. 5B). This suggests that EMT-driven plasticity, despite 
specifically enriching for a single phenotype (stem-like 
cells), provides higher phenotypic diversity via increased 
cell–cell phenotypic divergence.

Spontaneous EMT followed by phenotypic variation 
in transformed hMECs
We sought to further characterise the influence of EMT-
driven plasticity in a different in  vitro TNBC model, 
where EMT-driven plasticity was observed to spontane-
ously occur. The model is derived from hMECs which, 
upon oncogenic transformation by shTP53-HRASG12V-
hTERT, generate distinct EPCAM+/CD24+/CD44- 
epithelial and EPCAM-/CD24-/CD44+ mesenchymal 
populations [16] (Fig.  3A). Although cells retain their 
epithelial or mesenchymal features over time (Sup-
plementary Fig.  6A,B), a fraction of the mesenchymal 
cells spontaneously started to gradually diverge into 
an EPCAM-/CD24+/CD44+ “in-between” population 
(Fig.  3B). When isolated by fluorescence-activated cell 
sorting (FACS), EPCAM-/CD24+/CD44+ cells could 
reproduce this gradient variation between CD24- and 
CD24+ states, which was not observed in standard epi-
thelial nor mesenchymal cells (Supplementary Fig.  6C). 
Importantly, this rare in-between population appeared 
stochastically and was not observed in biological rep-
licates of the oncogenic transformation mediated by 
shTP53-HRASG12V-hTERT.

As this suggested the presence of a higher-plasticity 
mesenchymal population, we therefore sorted, clon-
ally expanded and further characterised epithelial (Epi), 

(See figure on next page.)
Fig. 2  Characterisation of EMT+ and EMT- inducible 3D models. A Experimental scheme. Cells first undergo oncogenic transformation 
with the induction of the HRASG12V oncogene, either in a normal epithelial (EMT-) or EMT (EMT+) background, then single-cell cloning 
to produce EMT- and EMT+ populations. Untreated and doxorubicin-treated replicates are analysed via single cell RNA sequencing. B EMT- (top) 
and EMT+ (bottom) spheroids in culture. C UMAP representation and single cell clusters of all cells in EMT- and EMT+ populations (treated & 
untreated). D Expression of mammary lineage markers EPCAM, MME (CD10), ITGA6 (CD49f ) and CD24 in each cluster. E Cellular composition 
of each replicate. F. Cell-identity-based calculation of the Shannon diversity in each replicate. G Distributions of genetic distances to median 
profile for individual cells in EMT- and EMT+ models. Boxplots: Black horizontal bar display the median; boxes display the interquartile range (IQR) 
between first and 3rd quartiles; whiskers extend to either the minimum between highest value and the first quartile + 1.5 times the IQR (top), 
and the maximum between the lowest value and the first quartile - 1.5 times the IQR (bottom). H Distributions of phenotypic distances to the mean 
expression profile for individual cells in EMT- and EMT+ populations. NT stands for non-treated, T for treated. Numbers in replicate names indicate 
the clone identification number in single-cell cloning experiments
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Fig. 2  (See legend on previous page.)
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mesenchymal (Mes), and in-between (InB) cells (Sup-
plementary Fig.  6D). Each population was defined solely 
by FACS-sorting based on EpCAM, CD24 and CD44 
expression. As with our inducible 3D models, we analysed 
isogenic Epi, Mes and InB clones before and during treat-
ment, this time in 2D culture. 2 replicates of each popu-
lation were subjected to doxorubicin treatment, while 2 
were left untreated (Fig. 3C). By following each clone over 
4 weeks in culture, we specifically selected clones retaining 
a CD24+ phenotype as InB, and those retaining a CD24- 
phenotype as Mes. All three models are isogenic, origi-
nating from the same hMEC population. 2 clones of each 

population (Epi, InB, Mes) were analysed by scRNA-seq 
before and after treatment with doxorubicin, resulting in 
32K cells analysed (Supplementary Table  2). scRNA-seq 
analyses confirmed that each population’s phenotype in 
term of CD24, CD44 and EpCAM expression was conform 
to cytometry-based expectations before and after treat-
ment (Fig. 3D, Supplementary Fig. 7).

Phenotypically variable mesenchymal cells display highest 
phenotypic cell–cell divergence
We could identify 5 clusters using the same clustering 
analyses as for the inducible models, 3 of which were 

Fig. 3  Spontaneous EMT model and phenotypically variable “in-between” population. A Fluorescence-activated cell sorting (FACS) based 
on the EPCAM (left), CD24 and CD44 markers (right) of the original population after hTERT/HRASG12V/shTP53 induction. EPCAM+/CD24+/CD44- cells 
are epithelial, while a second population of spontaneously appearing EPCAM-/CD24-/CD44+ cells is mesenchymal. B FACS analysis of a cell culture 
replicate in which a third population with an EPCAM-/CD24+/CD44+ phenotype spontaneously emerged. Epi (EPCAM+/CD24+/CD44-), Mes 
(EPCAM-/CD24-/CD44+) and InB “in-between” cells (EPCAM-/CD24+/CD44+) were isolated and analysed separately. C Experimental scheme. Epi, 
Mes and InB cells undergo single cell cloning, before two clones of each were analysed by scRNA-seq with or without doxorubicin treatment. 
Clones retaining CD24- and CD24+ phenotypes over 4 weeks of culture were specifically selected for Mes and InB cells, respectively. D Expression 
of EPCAM, CD24 and CD44 markers post-scRNA-seq in each replicate. NT stands for non-treated, T for treated. Numbers in replicate names indicate 
the clone identification number in single-cell cloning experiments
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similar to the MaSC, LP and mL populations previously 
identified, albeit with unexpectedly strong expression of 
ITGA6 (CD49f) in all cells (Fig.  4A, B, Supplementary 
Fig. 8). 2 small isolated clusters could also be identified, 
and found to be respectively enriched in epithelial (Epi-
thelial outliers) and post-treatment cells (Treated outli-
ers). Once more, we point out that this cellular labelling 
should be interpreted with caution.

As with our inducible model, an enrichment in MaSC 
cells was observed in both populations having under-
gone EMT (Mes and InB), independently of treatment. 

Using cell type classification in this model, the Epi popu-
lation displayed marginally lower diversity compared to 
the Mes and InB populations, before and after treatment 
(Fig.  4C, D). Due to their small size (< 200 cells each), 
both the Epithelial and Treated clusters were excluded 
from further analyses.

Using individual cell divergence from the median 
genomic and mean transcriptomic profiles (see Meth-
ods for details), InB cells were characterised by the 
highest genetic and phenotypic divergence (Fig.  4E, F, 
Supplementary Fig. 9–10). Epi cells displayed the lowest 

Fig. 4  Characterisation of the spontaneous EMT model. A UMAP representation and single cell clusters of all cells in Epi, Mes and InB populations 
(treated & untreated). B Expression of mammary lineage markers EPCAM, MME (CD10), ITGA6 (CD49f ) and CD24 in each cluster. C Cellular 
composition of each replicate. D Cell-identity-based calculation of the Shannon diversity in each replicate. E Distributions of genetic distances 
to median profile for individual cells in Epi, Mes and InB populations. F Distributions of phenotypic distances to the mean expression profile 
for individual cells in Epi, Mes and InB populations. NT stands for non-treated, T for treated. Numbers in replicate names indicate the clone 
identification number in single-cell cloning experiments
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genetic and phenotypic divergence. As with our induc-
ible models, genetic diversity appeared to increase under 
treatment for each replicate (Supplementary Figs. 5 and 
10, all p < 0.001, two-tailed t-test). Our results, based on 
incomplete relative CNA data, thus cannot support the 
hypothesis of the selection of subpopulations harbouring 
specific genomic alterations.

To further account for coverage differences between 
cell populations, we also performed 5 random downsam-
pling experiments (see Methods). After downsampling, 
individual and population average profiles were com-
pared using Euclidean distances to quantify intra-popula-
tion phenotypic divergence. This yielded results similar to 
the non-downsampled analyses (all p < 0.001, Supplemen-
tary Fig. 11), thus confirming that EMT-driven plasticity 
appears to promote cell–cell phenotypic divergence.

InB cells are enriched in rare pre‑adapted outliers
We next investigated the impact of treatment on cell–cell 
phenotypic divergence in all 5 populations. We could 
not detect specific genomic gains or losses significantly 
associated with doxorubicin resistance (Supplementary 
Fig.  12, see Methods). We observed a trend for pheno-
typic divergence to decrease after treatment in the higher 
plasticity populations of each model (Fig. 5A). This could 
indicate stronger selection at the phenotypic level in 
high-plasticity populations under doxorubicin treatment. 
To investigate whether this coincided with the presence 
of pre-existing adapted cells, we first determined post-
treatment overexpression signatures that were specific to 
each of the 5 in  vitro models (EMT-, EMT+ , Epi, Mes, 
InB). Using gene signatures, we then investigated the 
presence of pre-adapted cells, defined as those with high 
post-treatment signature enrichment in the untreated 
population (see Methods, Supplementary Table 3).

Using a threshold corresponding to a Z-score of 1 in 
the post-treatment distribution of each model (mean of 
the post-treatment enrichment score distribution + 1 
time its standard deviation), we found that, before 
treatment, high plasticity EMT+ and InB populations 
displayed a > 40-fold increase in pre-adapted cells com-
pared to lower plasticity populations (3.03% and 3.20% 
vs 0.00%, 0.16% and 0.05%, two-tailed t-test: p = 0.003, 
Fig.  5B). More relaxed enrichment score thresholds 

corresponding to the top 25% and top 50% of the treated 
populations also yielded > tenfold increases in EMT+ and 
InB populations (Supplementary Fig. 13). Post-treatment 
signatures are thus derived from treated cells (compared 
to gene expression in untreated cells), while pre-adapted 
cells are untreated cells displaying high expression 
of these post-treatment signatures, but in absence of 
treatment.

We then investigated whether the high-scoring pre-
adapted cells were outliers in their respective untreated 
populations. The score distribution for the presence of 
pre-adapted cells in the untreated InB population had 
high skewness and kurtosis, indicating a heavy right-
tail bias and a high prevalence of outliers (Fig.  5C, D). 
We report that the EMT+ populations displayed fewer 
high-scoring outliers than other populations (p < 0.001, 
Supplementary Fig. 14), and was more similar to its post-
treatment counterpart as a whole (p < 0.001, Supple-
mentary Fig. 15, two-tailed Mann–Whitney U test). On 
the other hand, the InB distribution was heavily skewed 
towards the right and was the most enriched in high-
scoring outliers (p < 0.001, two-tailed Mann–Whitney U 
test, Supplementary Fig. 14). This suggests that the entire 
EMT+ population was more adapted prior to treatment, 
while InB cells appeared to contain a rare subset of pre-
adapted cells that phenotypically stood out from the rest 
of the population. These results were also reproducible in 
downsampled analyses (Supplementary Fig. 16). In addi-
tion, pre-adapted cells from the untreated InB population 
showed expression patterns anti-correlated to a dor-
mancy expression signature [17], suggesting that doxoru-
bicin treatment did not select for initially quiescent cells 
(p < 0.001, Pearson correlation; Supplementary Fig. 17).

We analysed the score distributions specific to Epi, 
Mes, and InB post-treatment signatures in the other two 
populations, which highlighted that the InB population 
also displayed strong outliers for the Epi post-treatment 
signature (Supplementary Fig.  18). Signature enrich-
ment analyses using the same number of genes selected 
at random (see Methods) furthermore indicated low 
expectations for skewness and kurtosis in all popula-
tions (Supplementary Fig.  19). This suggested that the 
outlier prevalence observed in the post-treatment scores 
of untreated InB cells appears to be specific to resistance 

Fig. 5  Pre-adapted cells. A Difference in phenotypic divergence before and after treatment in each replicate of each population. Values above 0 
indicate an increase in phenotypic divergence after treatment, values below 0 indicate a decrease. B Percentage of pre-adapted cells (high-scoring 
cells based on post-treatment expression signatures) in the untreated populations. C Skewness and kurtosis of the respective post-treatment 
signature enrichment score distributions in each untreated population. Skewness > 0 and < 0 respectively indicate right- and left-tailed distribution 
biases, while higher kurtosis indicates a higher prevalence of outliers. D Density distributions of post-treatment signature enrichment Z-scores 
in untreated cells. Vertical bars indicate the lower boundaries of the top 5% in each population

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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mechanisms in this population, and unlikely to have 
occurred by chance.

After spontaneously undergoing an EMT and acquiring 
the ability to increase phenotypic variation, InB cells thus 
appear to display and extreme form of plasticity. This 
helps them promote phenotypic variation by increasing 
the cell–cell divergence in gene expression, which can 
stochastically facilitate the emergence of better adapted 
phenotypes. This in turn indicates that plasticity-medi-
ated resistance is a prospective process rather than a 
reactive one in our model.

Plasticity signature predicts survival in TNBC patients 
treated by chemotherapy
InB cells displayed more plasticity and more phenotypic 
divergence than Mes cells in our spontaneous EMT 
model, while their CD24+ expression status could fur-
thermore correspond to a partial-EMT state. Using sig-
nature enrichment to evaluate their mesenchymal status, 
we observed that InB cells were in fact more mesenchy-
mal than Mes cells (Fig.  6A, Supplementary Fig.  20). 
Their higher plasticity was therefore unlikely to stem 
from a partial EMT.

We defined over- and under-expressed genes in 
MaSC-like InB cells compared to MaSC-like cells from 
the Epi and Mes populations (see Methods). Further 
GSEA analyses revealed that multiple pathways linked 
to multicellular organism regulation and differentiation 
were impacted, with a prevalence of pathways linked 
to neurogenesis (Fig.  6B). To understand whether these 
expression changes could impact resistance in  vivo, we 
investigated their impact on survival in 221 TNBC cases 
treated by chemotherapy from the METABRIC [18, 19] 

cohort. We report that patients with low expression of 
the genes under-expressed in InB cells displayed signifi-
cantly worse survival (p = 0.03, Cox proportional hazard 
model, p = 0.03, logrank test, Fig. 6C).

This suggests that our results on the impact of plasticity 
on phenotypic diversity dynamics and therapeutic adap-
tation, which are derived from in vitro models, also bear 
significance in clinical settings.

Discussion
We investigated the impact of EMT-driven plastic-
ity on the dynamics of phenotypic diversity in response 
to chemotherapy using single-cell transcriptomics and 
in vitro TNBC models. We report that populations with 
increased plasticity (EMT+ cells in the inducible EMT 
model; InB and, to a lesser extent, Mes cells in the spon-
taneous EMT one) also displayed higher cell–cell pheno-
typic divergence. In InB cells, characterised by a unique 
ability to gradually diverge from a spontaneously occur-
ring yet initially stable mesenchymal phenotype, we 
furthermore report that high cell–cell divergence can 
facilitate the emergence of rare pre-adapted phenotypes.

It is first worth noting that our results are only rep-
resentative of the early stages of chemotherapy, as 
our experiments’ time scale was too short to yield 
fully resistant clones. This is in line with the absence 
of detectable genetic selection, as the genetic diver-
sity increased significantly after treatment in all repli-
cates in both inducible and spontaneous EMT models. 
This was confirmed using pairwise genetic divergence 
measures (Supplementary Fig. 21), and could in part be 
explained by the impact of doxorubicin, a DNA-inter-
calating agent causing DNA damage [20], thus likely to 

Fig. 6  Plasticity signatures. A Gene set enrichment scores for the Epithelial-Mesenchymal Transition hallmark gene set in each replicate of the Epi, 
Mes and InB populations, using the AUCell software. For each clone: clear-colour samples on the left are untreated, darker-colour samples 
on the right are treated. B Top 10 enriched Gene Ontology (GO) biological processes in genes down- (red, left) up-regulated (green, right) in MaSC 
cells from the InB population compared to MaSC cells from the Epi and Mes populations. C Kaplan–Meier survival curves for TNBC patients treated 
with chemotherapy in the METABRIC cohort. Patients categorised as “Low expression” display the weakest expression of genes downregulated 
in MaSC cells from the InB population
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increase the presence of cell-specific large copy num-
ber alterations and genetic diversity. We only analysed 
scRNA-seq-derived relative copy number alteration 
scores, and our analyses therefore lack the precision 
necessary to accurately reflect the genetics underly-
ing each population’s evolution. Our divergence meas-
ures are furthermore not a direct measure of selection 
strength, which may be operating beyond our limited 
ability to detect it. As such, although our data suggests 
that prospective phenotypic diversification is a likely 
scenario in EMT-driven resistance in our breast cancer 
model, we cannot fully exclude a possible contribution 
of the reactive adaptation scenario in this context (nor 
in others). Approaches combining scRNA-seq with lin-
eage tracing [21–23] may thus provide complementary 
evidence to more fully delineate the impact of EMT on 
the dynamics of resistance in the future.

We nonetheless demonstrate that phenotypes express-
ing genes typically overexpressed 3  weeks following 
treatment were already present in highest plasticity pop-
ulations of each model, at much higher frequencies than 
in lower plasticity populations. In InB cells, pre-adapted 
cells represented a minority of high-scoring cells strongly 
diverging from the population average phenotype. Our 
results consequently suggest that cells with the high-
est level of plasticity are able to more easily foster pre-
adapted clones, thanks to a prospective diversification 
process in which the cell–cell divergence is increased in 
the population. These pre-adapted phenotypes are not 
necessarily stable, as stochastically occurring transient 
states can also foster resistance [24, 25]. Furthermore, 
phenotypic similarity between stochastically occurring 
cell states does not imply a recent common ancestor, and 
selection of a specific phenotype may thus not translate 
into a signal detectable at the genetic level. Such phe-
notypic diversification is however consistent with a bet-
hedging evolutionary strategy [26, 27], in which cancer 
cells can increase their adaptation potential, possibly 
by hijacking the cell–cell variability inherent to normal 
developmental processes [28] such as the EMT.

The classification of cells that escaped the constraints 
of normal homeostasis, and may thus not reflect a main-
tained phenotypic archetype, is a difficult task. Classifi-
cation-agnostic divergence measures, however, do not 
depend on the accuracy of either identification or anno-
tation of cellular subtypes. In this work, they provided 
information that was absent from diversity measures 
based on traditional cell subtype classifications, whose 
biological relevance we cannot claim to be universally 
accepted. This is in agreement with previous sugges-
tions that static cell classifications can provide limited 
and incomplete information for intra-tumour phenotypic 
heterogeneity quantification purposes [15], and provides 

another argument in favour of classification-agnostic 
approaches in this aim.

In our spontaneous EMT model, the InB high-plas-
ticity mesenchymal population was characterised by 
its ability to stably re-express luminal epithelial marker 
CD24 [29]. Interestingly, CD24+/CD44+ InB cells were 
however deemed even more mesenchymal than the more 
classical CD24-/CD44+ Mes population [30, 31], based 
on scRNA-seq data and using three different expression 
signatures. They would therefore correspond better to a 
“hybrid” EMT state rather than to a “transient” or “par-
tial” one, although these alternatives may be appropriate 
to other cell types and models. This furthermore suggests 
that increased EMT-driven plasticity is not necessarily 
associated with an intermediate phenotype between the 
two end states of the EMT, but can arise from an ability 
to increase phenotypic variation once a full, unbridled 
EMT occurred in a cancerous context. Additional stud-
ies will be needed to fully characterise the mechanism(s) 
providing InB cells with increased plasticity, as well as to 
determine how it can be detected and prevented in can-
cer. Although cells expressing both classical CD24 and 
CD44 markers have typically been used to determine 
hybrid EMT states and their relation to survival [9] and 
resistance [8] in breast cancer, complementary markers, 
such as ITGB4 [32] may provide additional and com-
plementary information to identify cells with enhanced 
plasticity.

In this regard, we could associate a scRNA-seq-derived 
down-regulated gene signature for high-plasticity, using 
the specific characteristics of stem-like InB cells. This sig-
nature had prognostic value in TNBC patients treated by 
chemotherapy: low-scoring, high-plasticity patients dis-
played worse survival. The fact that plasticity appears to 
facilitate the emergence of already adapted phenotypes 
further suggests that, rather than aiming to circumvent a 
reactive mechanism of non-genetic adaptation, therapeu-
tic solutions targeting cancer cell plasticity should focus 
on reducing phenotypic diversity prior to treatment. Our 
study therefore highlights that better characterisation of 
EMT-driven plasticity’s impact on phenotypic diversity 
has strong translational potential to improve the clinical 
care of breast cancer patients.

Material and methods
Cell culture
Primary human mammary epithelial cells (hMEC) were 
immortalised by human Telomerase Reverse Tran-
scriptase (hTERT) and named HME.

For the EMT- and EMT+ models, a retroviral pLNCX-
2neo-RASER expression vector containing an inducible 
activation of H-RASv12 was included in HME cells. To 
produce inducible ZEB1, cells were transduced with 
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pTRIPz-puro-ZEB1 expression vector. Heterogene-
ous HME-RASER-ZEB1 cells were subdivided into one 
clonal population named TF16. Cells were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM)/HAMF-
12 medium with 1% glutamax (ThermoFisher Scientific, 
#31331093) with 10% heat-inactivated foetal calf serum 
(Eurobio Scientific, #CVFSVF0001), 100 U/mL penicil-
lin/100  µg/mL streptomycin (ThermoFisher Scientific, 
#15140-122), 10  mg/mL insulin (NovoRapid, NovoNor-
disk, #7200980), 10  ng/mL human epidermal growth 
factor (EGF) (Peprotech, #AF-100-15), 0.5 mg/mL hydro-
cortisone (Sigma-Aldrich, #H0888), 0.5  µg/mL puro-
mycin (Invivogen, #ant-pr-1), and 100  µg/mL geneticin 
(ThermoFisher Scientific, #10131-027).

For the Epi, Mes and InB models, primary hMEC 
were infected with pRetroSuper puro-shp53, 
pBabe neo-RASG12V and pBabe hygro-hTERT 
(RRID:Addgene_1773), as previously described [16], 
and named HME-shp53-RAS thereafter. Cells were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM)/
HAMF-12 medium with 10% heat-inactivated foetal calf 
serum, 100 U/mL / 100  µg/mL penicillin / streptomy-
cin, 10  mg/mL insulin, 10  ng/mL human EGF, 0.5  mg/
mL hydrocortisone, 0.5  µg/mL puromycin, and 100  µg/
ml geneticin. All cell lines were kept at 37  °C in a 5% 
CO2/95% air incubator, and were routinely tested nega-
tive for mycoplasma contamination using the Lonza 
MycoAlert PLUS Mycoplasma Detection Kit (Lonza, 
#LT07-318).

Lentiviral and retroviral infections
To produce H-RASV12ER (RASER) cells for the EMT- and 
EMT+ models, 2 × 106 Phoenix cells (ATCC) were trans-
fected by GeneJuice® Transfection Reagent (MerckMilli-
pore; #70967-3) with 10 µg of pLNCX2-neo-RASER. 48 h 
post-transfection, the supernatant was collected, filtered, 
supplemented with 5 µg/ml of polybrene (Sigma-Aldrich; 
#H9268) and combined with targeted cells for 6 h. Cells 
were selected 48  h following the infection with 100  µg/
ml geneticin. To induce RAS activation in HME-derived 
cells, (Z)−4-Hydroxytamoxifen (4-OHT) (Sigma-Aldrich, 
#H7904) was added in the medium at 500  nM every 
2–3 days.

To produce inducible ZEB1, 2 × 106 HEK293T cells 
(RRID:CVCL_0063) were transfected with GeneJuice® 
Transfection Reagent with 13.02  µg of total lentiviral 
expression vectors (5.1  µg of pCMVdeltaR8.91, 1.32  µg 
phCMVG-VSVG and 6.6  µg interest plasmid (pTRIPz-
puro-ZEB1)). 48  h post-transfection, the supernatant 
was collected, filtered, supplemented with 5  µg/ml of 
polybrene and combined with the targeted cells. Cell 
selection was made 48  h post-infection with the addi-
tion of puromycin at 0.5 µg/mL (Invivogen; #ant-pr-1) in 

the medium. To induce ZEB1 expression in HME cells, 
doxycycline hyclate (Sigma, #D9891) was added in the 
medium at 1 µg/ml every 2–3 days.

Plasmids
The retroviral plasmid pLNCX2-neo-RASER [33]  was 
purchased from Addgene (RRID:Addgene_67844). The 
inducible pTRIPz-puro-ZEB1 lentiviral plasmid was 
modified from the pTRIPz-puro-RFP (Openbiosys-
tems, #RHS4750) by replacing the RFP by the full-length 
human ZEB1 cDNA from pBabe-ZEB1-puro vector.

3D culture
TF16 EMT+ and TF16 EMT- cells were collected and 
added in Advanced DMEM/F-12 (ThermoFisher Sci-
entific, #12634-010) with 10% R-Spondin conditioned 
medium (500 ng/mL; homemade), 100 ng/mL Recombi-
nant Human Heregulinβ−1 (Peprotech, #100-03), 5 ng/
mL Recombinant Human KGF (FGF-7) (Peprotech, 
#100-19), 20 ng/mL Recombinant Human FGF-10 (Pep-
rotech, #100-26), 5  ng/mL Human Epidermal Growth 
(EGF) (Peprotech, #AF-100-15), 100  ng/mL Recombi-
nant Human Noggin (Peprotech, #120-10C), 500  nM 
A83-01 (Bio-Techne, #2939), 5  mM Y-27632 dihydro-
chloride (Bio-Techne, #1254/10), 500  nM SB202190 
(Sigma, #S7067), 1% B27 supplement (ThermoFisher 
Scientific, #17504-44), 1,25  mM N-Acetyl-L-cysteine 
(Sigma, #A9165-5  g), 5  mM nicotinamide (Sigma, 
#N0636), 1% Supplement GlutaMAXTM (ThermoFisher 
Scientific, #35050061), 10  mM hepes (ThermoFisher 
Scientific, #15680-056), 100  U/mL/100  mg/mL peni-
cillin/streptomycin (ThermoFisher Scientific, #15140-
122), and 50 µg/mL primocin (Invivogen, #Ant-pm-05). 
40  µL of this suspension containing 20,000 cells was 
gently mixed with 40  µL of Cultrex Reduced Growth 
Factor Basement Membrane Extract, Type 2, Select 
(BME) (Bio-Techne, #3536-005-02) and was placed in a 
well of a prewarmed ultralow-attachment 96-well plate 
(Corning, #003474). To allow the mix to harden, the 
plate was incubated at 37  °C for at least 30 min. Upon 
complete gelation of the suspension, 100 µL of medium 
completed with treatments was gently added to each 
well and the plate was incubated at 37 °C with 5% CO2. 
To avoid detachment of the matrix, 10  µL of medium 
was added twice a week, and medium was completely 
changed when it became yellow. After 1  week, doxo-
rubicin hydrochloride (Euromedex, #TA-T1020) was 
added to the medium every 2–3  days in each condi-
tion. After 3 weeks of subsequent culture with or with-
out doxorubicin treatment, spheroids were harvested 
with TrypLETM Express (ThermoFisher Scientific, 
#12605010) and stained with DAPI. A FACSMelodyTM 
Cell Sorter or FACSAria III (BD Biosciences) was used 
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to select unique cells and avoid multiplets for single cell 
experiments. Unique cells collected were brought to 
the dedicated platform for single cell RNA sequencing.

Flow cytometry sorting
For CD44/CD24/EPCAM sorting, cells were stained 
with primary antibodies from Miltenyi Biotech: 
anti-CD44 labelled Fluorescein-5-isothiocyanate 
(FITC) (clone REA690, #130-113-341, dilution 1:400, 
RRID:AB_2726117), anti-CD24 labelled phycoeryth-
rin (PE) (clone REA832, #130-112-656, dilution 1:50, 
RRID:AB_2656557), anti-CD326 (EpCAM) labelled 
allophycocyanin (APC) (clone REA764, #130-111-000, 
dilution 1:400, RRID:AB_2657497). hMEC-shp53-RAS 
cells were washed with PBS, stained with antibodies 
protected from light at 4°C during one hour, and then 
incubated with 4’,6-Diamidino-2-phenylindole dihy-
drochloride (DAPI) for 15  min. hMEC-shp53-RAS 
cells were sorted with a FACSMelodyTM Cell Sorter 
or FACSAria III (BD Biosciences) under 3 condi-
tions: EpCAM+/CD24+/CD44- (epithelial cells “Epi”), 
EpCAM-/CD24-/CD44+ (mesenchymal cells”Mes”) 
and EpCAM-/CD24+/CD44- (in between cells “InB”). 
TF16 cells were washed with PBS and incubated with 
DAPI for 15 min. DAPI negative TF16 cells were sorted 
with a FACSMelodyTM Cell Sorter or FACSAria III 
(BD Biosciences). One cell per well was incubated in a 
96 well plate for each cell line and condition. Medium 
was changed twice a week. Once clones reached more 
than 1 million cells, they were deemed viable for future 
experiments. Sorted hMEC-shp53-RAS clones were 
cultured and flow cytometry analysis was performed 
every week for 5  weeks, to confirm the phenotype of 
each clone. The most stable candidates were selected 
for subsequent treated/untreated experiments and 
scRNA-seq analyses.

Flow cytometry analysis
Fresh hMEC-shp53-RAS cells were washed with PBS, 
stained with EPCAM, CD24 and CD44 antibodies for 
at least 1 h at 4  °C protected from light, then washed 3 
times with PBS and stained 15  min with DAPI. Data 
acquisition was performed with a FACS BD LSR Fortessa 
(Becton Dickinson). Daily calibration of the cytometer 
was assessed using Cytometer, Setup and Tracking (CST) 
beads (Becton Dickinson) according to the manufactur-
er’s instructions. Sample acquisition was set up to have 
10,000 events across all conditions at an adapted flow 
rate. Post-analysis was done using FlowJo v10 software 
(FlowJo, RRID:SCR_008520). Antibody validation infor-
mation is available on the manufacturers’ websites.

Cell cytotoxicity assay
MTT assays were assessed on 2D cells to determine 
IC60 (40% alive cells and 60% dead cells, Supplemen-
tary Fig.  22). Cells were plated at 0.5 × 104 per well in 
96-well plates and exposed to serial concentrations of 
doxorubicin for 96  h. Treated and non-treated cells 
were incubated with 0.5  mg/ml 3-(4,5-Dimethyl-2-
thiazolyl)−2,5-diphenyl-2H-tetrazolium bromide (MTT) 
solution (TOCRIS, #5224). After two hours of incuba-
tion, the incubation medium was removed and the blue 
MTT-formazan product was extracted with acidified iso-
propyl alcohol (0.04 N HCl). After 10 min extraction at 
room temperature, the absorbance of the formazan solu-
tion was read spectrophotometrically at 570 nm.

Doxorubicin treatment
According to results of MTT assays, the determined IC60 
concentrations of doxorubicin applied on the induc-
ible 3D models were 19 nM for TF16 EMT+ clones and 
17,3  nM for TF16 EMT- clones (inducible model). To 
find the concentration of doxorubicin adapted for each 
hMEC-shp53-RAS clone (spontaneous model), replicates 
were cultured for 5 weeks using different reduced doses 
of doxorubicin compared to the original TF16 popula-
tion’s IC50: 8, 10, 12, 14 and 16 nM. Doxorubicin doses 
were added to the medium every 2  days. After 4  weeks 
of doxorubicin treatment, the replicate that still survived 
under the highest possible dosage was collected for each 
clone. The selected dosages were 8  nM doxorubicin for 
clones 2 (Mes) and 31 (InB), 10 nM for clones 7 (InB) and 
14 (Mes), and 14 nM for Epi clones 1 and 2. They were 
then sorted with negative DAPI staining with FACSAria 
III (BD Biosciences) and brought for the scRNA-seq 
procedure.

Single cell RNA sequencing
Fresh hMEC-shp53-RAS cells were collected and 
counted to have 2 million of cells in 1  mL of PBS with 
0,1% of Bovine Serum Albumin (BSA). Fresh TF16 EMT- 
and TF16 EMT+ spheroids were harvested, washed with 
PBS, filtered with 40 µM FlowmiTM cell strainer filter (SP 
Bel-ART, #136800040) and counted. Cells were incu-
bated for 15 min with DAPI protected from light in PBS 
with 0,1% BSA. A FACSMelodyTM Cell Sorter was used 
to keep singlet and live cells only. Live cells were counted 
a second time. The number of live cells was determined 
with a cell counter to obtain an expected cell recovery 
population of 5,000 cells per channel, then loaded on a 
10 × G chip and run on the Chromium Controller system 
(10 × Genomics) according to manufacturer’s instruction. 
Single-cell RNA-seq libraries were generated by the Can-
cer Genomic Platform of the CRCL with the Chromium 
Single Cell 3’ v.3.1 kit (10X Genomics, no. PN-1000121) 
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and sequenced on the NovaSeq platform (Illumina) to 
obtain around 50,000 reads per cell.

Single cell basic analyses and clustering
3D culture experiments with the inducible models were 
processed individually, while experiments with the spon-
taneous EMT models were processed in three batches 
of 4 samples pooled using the CellPlex technology 
(10X Genomics): the first batch contained the two rep-
licates of the Mes (2 and 14) and InB (7 and 31) popu-
lations, untreated; the second batch contained the two 
replicates of the Mes and InB populations, treated; the 
third batch contained the two Epi replicates (1 and 2), 
treated and untreated.

Single cell expression data were analysed using the 
Seurat package (RRID:SCR_016341) [34]. Inducible cells 
(EMT+ and EMT- models) with fewer than 1,500 genes 
or 2,000 UMIs, or with more than 10% of reads mapped 
to mitochondrial RNA were filtered out. Spontaneous 
EMT cells (Epi, Mes and InB models) with fewer than 
1,500 genes or 5,000 UMIs, or with more than 7% of 
reads mapped to mitochondrial RNA were filtered out. 
Inducible (48K) cells and spontaneous cells (32K) were 
pooled, normalised and analysed separately. Cell cycle 
regression was not performed, as major differences are 
expected depending on cells’ mammary differentiation 
subtype. Harmony [35] was used for further batch nor-
malisation. Clusters were obtained by restricting analyses 
to the genes from the MaSC, LP and mL signatures refer-
enced in Lim et al. [36] (500, 156 and 500 genes, respec-
tively). The 30 closest neighbours were used for UMAP 
analyses and clusters were defined on UMAP data, using 
the original Louvain algorithm with a resolution of 0.01 
for inducible cells, and 0.02 for spontaneous EMT cells. 
Gene signature enrichment analyses for all signatures 
were performed using the AUCell package [37]. EMT 
expression signatures were obtained from MsigDB [38], 
Gavish et al. [39] and Tan et al. [11].

Genetic and phenotypic divergence
Copy number alteration (CNA) profiles for all cells were 
calculated using the inferCNVplus software (https://​
github.​com/​Charl​eneZ95/​infer​cnvPl​us, based on 
inferCNV of the Trinity CTAT project: https://​github.​
com/​broad​insti​tute/​infer​CNV), by pooling cells from 
each individual replicate before and after treatment. 
scRNA-seq data from normal, untransformed hMEC 
in  vitro cultures were used as normal references, thus 
using 3 populations per calculation (before treatment, 
after treatment, reference). Although scRNA-seq-derived 
CNA profiles are relative and cannot be used to infer 
exact CNAs, we used them to calculate average pro-
files for each population, and evaluate how much each 

cell diverged from it. Individual CNA profiles were first 
averaged on a per (minor) cytoband basis, according to 
Ensembl hg38 annotations. Individual per-cytoband 
profiles were then summarised using the median value 
across all cells for each population, separating pre- and 
post-treatment cells. We finally used Euclidean distances 
to quantify the intra-population genetic divergence (each 
individual cell profile compared to the respective median 
CNA profile, and pairwise distances between all cells).

A similar approach was used to quantify phenotypic 
divergence, by first averaging the Seurat-normalised 
counts per gene across all cells in a population, to obtain 
mean expression profiles. We used the mean rather than 
the median to avoid obtaining values of 0 for infrequently 
expressed genes. Pre- and post-treatment cells from 
the same replicate were analysed separately. To better 
account for coverage (number of reads per cell) differ-
ences between cell populations, we used non-parametric 
correlation-based distances (Spearman’s rho) between 
individual cell profiles and population average profiles to 
quantify the intra-population phenotypic divergence.

We performed 5 replicates of a downsampling proce-
dure by randomly sampling (without replacement) at 
most 5,000 UMIs per cell in the inducible EMT model, 
and 15,000 UMIs per cell in the spontaneous EMT 
model. This discrepancy is explained by the higher base-
line coverage in the spontaneous EMT model (Supple-
mentary Table 1). Cells with fewer than 5,000 or 15,000 
UMIs (respectively in inducible and spontaneous EMT 
models) were not downsampled. As previously, average 
transcriptomic profiles were calculated for each popula-
tion. Phenotypic divergence was then calculated using 
Euclidean distances between the now similarly covered 
cells and the average profiles. Given the low variability 
between the 5 replicates, no further downsampling repli-
cates were performed.

Recurrent gains and losses post‑doxorubicin treatment
For each of the 10 clones from the 5 populations (EMT-, 
EMT+ , Epi, Mes, InB), we calculated the post-treatment 
difference in per-cytoband median CNA score (a positive 
value meaning an increase for the locus after treatment). 
We used single-samples t tests on all cytobands to esti-
mate if the post-treatment difference of each locus was 
significantly different from 0, and applied Bonferroni cor-
rection for multiple testing.

Pre‑adapted cell identification
Each population (EMT-, EMT+ , Epi, Mes, InB) was ana-
lysed individually, by pooling clone replicates but sepa-
rating cells according to treatment status. Differential 
expression was determined comparing the treated to the 
untreated cells using the FindMarkers function (Seurat 

https://github.com/CharleneZ95/infercnvPlus
https://github.com/CharleneZ95/infercnvPlus
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
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package). The top 50 genes with p < 0.001 and log fold 
change > 1 in the treated population were defined as post-
treatment markers. Single-sample signature enrichment 
analyses were performed using the AUCell software [37] 
on all cells (treated and untreated). In each population, 
respectively, we then defined pre-adapted cells as the 
untreated cells displaying an enrichment score superior 
to a given threshold defined on the treated cell score dis-
tribution. We used thresholds corresponding to a Z-score 
of 1 (mean of the treated distribution + 1 time its stand-
ard deviation), as well as the top 25% and top 50% of the 
treated distribution.

Distribution skewness and kurtosis were calculated in 
untreated cells with of the EnvStats R package (Fisher 
methods) on the respective Z-normalised post-treat-
ment scores of each population. To assess expecta-
tions of skewness and kurtosis of post-treatment score 
enrichment in each untreated population, 50 genes 
expressed in at least 5% of cells (treated and untreated) 
were selected at random 50 times. To account for differ-
ences in coverage and number of cells, genes expressed 
in at least 5% of cells were defined separately for the 
inducible (EMT-, EMT+) and spontaneous (Epi, Mes, 
InB) models.

METABRIC survival analysis
Cells classified as MaSC, due to high MME expression, 
from the InB population were compared to those classi-
fied similarly in the Epi and Mes populations. This was 
achieved with the FindMarkers function (Seurat pack-
age), selecting all genes with a corrected p < 0.001 and an 
absolute log fold change > 2. Genes with a positive fold 
change were grouped in the UP signature, while genes 
with a negative fold change were grouped in the DOWN 
signature. Z-score normalised expression data for the 
METABRIC cohort [18, 19] was retrieved using the 
cBioPortal [40–42], along with paired clinical data. To 
match our in vitro models, we selected only triple nega-
tive breast cancer cases (reported Pam50 status differing 
from “Her2”, “LumA” and “LumB”) treated with chemo-
therapy (specific information on the exact chemothera-
peutic agent used in each case was not available). This 
resulted in a subcohort of 221 females, with a median 
age at diagnosis of 49.6 years (range: 26.7–78.3). Gene set 
enrichment analyses (GSEA) on bulk RNA-seq data were 
performed using the corto package [43]. Cox propor-
tional hazard models and logrank tests were respectively 
performed using the surviplot (https://​github.​com/​arone​
klund/​survi​plot) and survival packages [44]. Survival 
analyses were right-censored at 10 years post diagnosis.
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