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Abstract
Background  Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive 
response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) 
play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict 
treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis 
and response to immunotherapy in LUAD patients.

Methods  DC-related biological functions and genes were identified using single-cell RNA sequencing (scRNA-
seq) and bulk RNA sequencing. DCs-related gene signature (DCRGS) was constructed using integrated machine 
learning algorithms. Expression of key genes in clinical samples was examined by real-time q-PCR. Performance of 
the prognostic model, DCRGS, for the prognostic evaluation, was assessed using a multiple time-dependent receiver 
operating characteristic (ROC) curve, the R package, “timeROC”, and validated using GEO datasets.

Results  Analysis of scRNA-seq data showed that there is a significant upregulation of LGALS9 expression in DCs 
isolated from malignant pleural effusion samples. Leveraging the Coxboost and random survival forest combination 
algorithm, we filtered out six DC-related genes on which a prognostic prediction model, DCRGS, was established. A 
high predictive capability nomogram was constructed by combining DCRGS with clinical features. We found that 
patients with a high-DCRGS score had immunosuppression, activated tumor-associated pathways, and elevated 
somatic mutational load and copy number variant load. In contrast, patients in the low-DCRGS subgroup were 
resistant to chemotherapy but sensitive to the CTLA-4 immune checkpoint inhibitor and targeted therapy.

Conclusion  We have innovatively established a deep learning-based prediction model, DCRGS, for the prediction 
of the prognosis of patients with LUAD. The model possesses a strong prognostic prediction performance with high 
accuracy and sensitivity and could be clinically useful to guide the management of LUAD. Furthermore, the findings 
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Background
Lung cancer is one of the most prevalent cancers with a 
high fatality rate [1]. Nearly 84% of lung cancers are non-
small cell lung cancer (NSCLC), and lung adenocarci-
noma (LUAD) is the most common subtype of NSCLC. 
Immunotherapies have been rapidly developed, but their 
successful application is severely constrained by the fact 
that only a minority of LUAD patients can benefit long-
term from immunotherapy. Several biomarkers, includ-
ing PD-L1 expression and tumor mutational burden 
(TMB), which are frequently employed for immunother-
apy response prediction, can only partially characterize 
the heterogeneity of the tumor microenvironment (TME) 
[2, 3]. Accurate evaluation of prognosis and improvement 
of survival in patients with LUAD remains a great chal-
lenge. Therefore, it is particularly important to develop 
a new prognostic signature that can be utilized to accu-
rately predict the response to treatment and the progno-
sis of patients with LUAD.

Dendritic cells (DC) are the best antigen presenting 
cells (APC), and DC-based vaccines have been widely 
used in cancer immunotherapy [4]. DCs can be broadly 
defined as conventional type I dendritic cells (cDC1s) 
and conventional type II dendritic cells (cDC2s), both of 
which play a crucial role in regulating the immune acti-
vation of CD8 + T cells and tumor antigen tolerance [5]. 
Although cancer cells can directly present tumor anti-
gens via their own major histocompatibility complex 
class I (MHC-I) molecules, cross-presentation of DCs, 
dedicated antigen-presenting cells, is necessary to main-
tain the cytotoxic immune response of primitive CD8 + T 
cells [6]. The elevated abundance of mature dendritic 
cells (mDCs) infiltrating the tumor microenvironment 
(TME) indicates a high level of CD8 + T-cell infiltration in 
lung cancer, which is associated with the long-term sur-
vival of NSCLC patients [7, 8]. Stimulatory dendritic cells 
(sDCs) also play a vital role in stimulating cytotoxic T 
cells and driving anticancer immunity [9]. Furthermore, 
activation of plasmacytoid dendritic cells (pDC) in the 
TME effectively enhances the ability of NK and T cells to 
recognize and kill tumor cells [10, 11]. Today, transcrip-
tome sequencing using clinical specimens has become an 
important tool for studying TME [12, 13]. Unfortunately, 
tumor tissue from LUAD patients is not always avail-
able. In terms of clinical diagnosis and the detection of 
genomic profiling, several investigations have established 
that malignant pleural effusion (MPE) and lung adeno-
carcinoma tissue (LAT) are clinically equivalent [14, 15]. 

MPE can be extensively used as an accessible specimen 
when tumor tissue is unavailable.

With the successful completion of human genome engi-
neering [16], precision medicine is gradually replacing 
the traditional medical model [17]; thus, there are now 
higher requirements for accurate prognosis prediction 
for cancer patients. Machine learning, which increases 
the accuracy of models through algorithm iteration, is 
widely used for the construction of clinical prognos-
tic models. DCs, which enhance the efficacy of immune 
checkpoint inhibitors (ICIs) by interacting with T cells 
[18, 19], have become a new breakthrough in tumor 
immunotherapy. Therefore, we used single-cell RNA 
sequencing (scRNA-seq) data to explore the functional 
differences of DCs in MPE and LAT samples and also 
assessed bulk RNA sequencing (bulk-seq) data to screen 
DC-associated genes. Machine learning algorithms were 
used to construct a DC-related gene signature (DCRGS) 
to predict prognosis, immunotherapy response, and drug 
screening in patients with LUAD.

Methods
Data source and pre-processing
Our research protocol is depicted in Fig.  1. The gene 
expression data of LAT used in this study were obtained 
from The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO). Among them, five datasets 
(TCGA-LUAD, GSE26939, GSE31210, GSE42127, and 
GSE72094) embracing comprehensive overall survival 
(OS) information were employed to build and validate 
DCRGS. The scRNA-seq data included five LAT samples 
and five MPE samples from LUAD patients from GEO 
and one MPE sample from the First Affiliated Hospital of 
Guangdong Pharmaceutical University (FAHGPU). The 
12 LAT samples used for the real-time quantitative PCR 
(RTqPCR) assay were obtained from FAHGPU. The ref-
erence gene sets used for the gene set enrichment analy-
sis (GSEA) were derived from the Molecular Signatures 
Database (MSigDB) and previously published studies 
(Additional file 1: Table S1). Immunotherapy sensitiv-
ity data were downloaded from The Cancer Immunome 
Atlas (TCIA).

Analysis of the scRNA-seq data
We used the R package “Seurat” to quality control 
the scRNA-seq data from 5 LAT samples and 6 MPE 
samples. Cells with a total number of genes detected 
greater than 500, a mitochondrial gene expression ratio 
less than 20%, an erythrocyte gene expression ratio less 
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than 3%, and a total number of unique molecular identi-
fiers (UMIs) greater than 1000 were retained. Next, the 
“NormalizeData” and “FindVariableFeatures” functions 
were utilized to normalize the data and find highly vari-
able genes with nfeatures = 2000. After further processing 
of the scRNA-seq data by the “ScaleData” and “RunPCA” 
functions, the R package “harmony” was employed to 
integrate the data to remove batch effects between sam-
ples. Cells were clustered with resolution set to 0.5 based 
on the “FindNeighbors”, “FindClusters” and “RunUMAP” 
functions. We annotated the cell clusters of the LAT and 
MPE samples using the marker genes. The “FindAllMark-
ers” function was used to identify differentially expressed 
genes for each cell type in the LAT and MPE samples, 
and then DC-related genes were filtered based on a 

differential expression multiple of 0.3 and a p value less 
than 0.05. In addition, we used the R packages “CellChat” 
and “monocle” for cell‒cell interaction analysis and pseu-
dotime cell trajectory analysis, respectively. The thresh-
olds used in the preprocessing of single-cell sequencing 
data were determined based on multiple references and 
comprehensive consideration of data quality [20–22].

Weighted gene coexpression network analysis (WGCNA)
TIMER2.0 was applied to infer tumor immunoinfil-
tration abundance [23], and the optimal cutoff value 
for DC infiltration abundance was determined by the 
“surv_cutpoint” function to stratify the TCGA-LUAD 
cohort. We used the level of DC infiltration abundance 
as a phenotypic trait and performed WGCNA [24] on 

Fig. 1  Flow chart outlining key comprehensive analyses used in the study
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the TCGA-LUAD transcriptome data to identify DC-
associated genes. Samples were first clustered using the 
“hclust” function, and the gene expression matrix was 
devoted to calculating a weighted network by expression 
similarity and determining a soft threshold for the net-
work. Then, the network neighbor distance of the gene 
expression matrix was calculated. The “TOMsimilarity” 
function was employed to calculate the topological over-
lap matrix (TOM). The modules were then identified by 
hierarchical clustering, setting the minimum number of 
genes in the module at 50. The “moduleEigengenes” func-
tion calculates the eigengenes of the module and clusters 
all modules hierarchically. The “moduleEigengenes” func-
tion was performed to calculate the eigengenes of the 
module, which can be applied to distinguish important 
modules related to the high or low infiltration abundance 
of DCs. 2000 genes were randomly selected to map the 
heatmap of the coexpression network, and the TOM dis-
similarity was exponentiated to better show the moderate 
intensity relationships of gene coexpression. Finally, the 
module and trait correlation heat maps were mapped by 
the labeledHeatmap function, and the genes of the mod-
ules significantly associated with DCs were extracted.

Derivation of prognostic signature with machine learning 
algorithms
DC-related genes were further screened by survival 
analysis, and the expression data of these genes were 
extracted from the TCGA-LUAD cohort as the training 
set. Meanwhile, the GSE26939, GSE31210, GSE42127 
and GSE72094 cohorts were employed as the validation 
set. To construct a prognostic signature with superior 
performance, we used a combination of 101 algorithms 
consisting of 10 different machine learning algorithms 
[25], which included random survival forest (RSF), least 
absolute shrinkage and selection operator (LASSO), 
ridge, elastic network (Enet), CoxBoost, partial least 
squares regression for Cox (plsRcox) [26], supervised 
principal components (SuperPC), gradient boosting 
machine (GBM), survival support vector machine (Sur-
vival-SVM), and stepwise Cox regression (StepCox). 
Machine learning models were cross-validated using 
leave-one-out cross-validation (LOOCV). The concor-
dance index (C-index) was used to assess each model’s 
performance, and the best model was then employed to 
filter the signature genes that were applied to create the 
DCRGS. The TCGA-LUAD cohort was then divided 
into low- and high-DCRGS subgroups according to the 
median DCRGS score, a commonly used threshold. Four 
GEO-LUAD cohorts were categorized into two sub-
groups using the same cutoff value as the TCGA-LUAD 
cohort to demonstrate the enhanced stability and robust-
ness of the prognostic model (Additional file 1: Table S2).

Evaluation of model performance and building nomogram
To further evaluate the performance of the prognostic 
model, multiple time-dependent receiver operating char-
acteristic (ROC) curve analysis was executed using the R 
package “timeROC” to assess the performance of DCRGS 
for the prognostic evaluation of patients aged 1–5 years. 
Additional clinical characteristics were collected from 
each cohort and contrasted with the prognostic accuracy 
of DCRGS to demonstrate its superiority. Furthermore, 
we retrieved 85 LUAD prognostic features from PubMed 
and determined the C-index of each feature across five 
cohorts (Additional file 1: Table S3). Then, we incor-
porated the DCRGS into a nomogram and assessed its 
accuracy using decision analysis, the C-index, and a cali-
bration curve. An online intersectional nomogram tool 
was developed using the R packages “shinydashboard” 
and “DynNom” to facilitate the clinical application of the 
prediction model.

RTqPCR
All clinical specimens were retrospectively collected 
from the First Affiliated Hospital of Guangdong Phar-
maceutical University. The study was approved by the 
Human Ethics Committee of the First Affiliated Hospital 
of Guangdong Pharmaceutical University (No. 69, 2022). 
RTqPCR was used to detect the expression levels of six 
key genes in the LAT samples. Primers for six key genes 
were designed according to the gene sequences in NCBI 
(Additional file 1: Table S4), and RTqPCR assays were 
performed using cDNA as template. In this study, Nano-
Drop 2000 C was used to determine the level of RNA in 
the recruited LAT samples. Next, reverse transcription 
kits were used to create cDNA amplification templates. 
Then, primers, templates, and samples were blended and 
kept in a constant-temperature bath at 50 °C for 30 min. 
Subsequently, the samples were transferred to an 85  °C 
thermostatic bath for 5 min, followed by cooling on ice. 
The materials were then divided among three 96-well 
plates to conduct the experiment.

Annotation of biological characteristics
Tumor immune cell infiltration scores were calculated 
for each LUAD patient by five algorithms, including 
TIMER2.0 (https:/​/cistro​me.shin​yapp​s.io/timer/), ​M​C​P​
-​c​o​u​n​t​e​r [27], xCell [28], single-sample gene set enrich-
ment analysis (ssGSEA) and ESTIMATE [29]. To further 
clarify the differences in biological functions in the TME 
between the two risk subgroups, GSEA was conducted 
using 15 previously published pathways associated with 
tumor development and 50 hallmark pathways. Gene 
Ontology (GO) enrichment analysis of differentially 
expressed genes from both subgroups was executed in 
this study. In addition, the expression differences of 74 

https://cistrome.shinyapps.io/timer/
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immune-related regulatory factors in both subgroups 
were explored.

Integrating analysis of single-nucleotide variant (SNV) and 
copy number variant (CNV)
SNV and CNV data of the LUAD cohort were obtained 
from the official TCGA website. The “maftools” package 
(version 2.10.05) was applied to display the top 20 gene 
mutation maps and 18 differentially expressed genes 
(p < 0.001) for the two subgroups. The “clusterProfiler” 
package was used to detect the enrichment of differen-
tially mutated genes in both subgroups in the reference 
gene set “c2.all.v2023.1.Hs.entrez.gmt” ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​g​s​e​
a​-​m​s​i​g​d​b​.​o​r​g​/​​​​​)​. Moreover, we used Gistic2.0 ​(​​​h​t​​t​p​s​​:​/​/​c​​l​o​​u​
d​.​g​e​n​e​p​a​t​t​e​r​n​.​o​r​g​/​​​​​) to analyze the CNV data online.

Immunotherapy sensitivity analysis and drug screening
We obtained clinical medication information from the 
TCIA website for the TCGA-LUAD cohort to predict the 
clinical response to ICIs in patients between the two sub-
groups. Furthermore, the R package “oncoPredict” was 
applied to predict the half maximal inhibitory concentra-
tion (IC50) of various targeted drugs and small molecule 
compounds in LUAD patients. A lower IC50 suggests 
that the drug is more successful in tumor treatment.

Statistical analysis
R software (version 4.1.3) was utilized for statistical anal-
ysis and visualization. The data were tested for normal-
ity using the “shapiro.test” function. The hypergeometric 
distribution was utilized to test the significance of the 
intersection in both sets. RTqPCR data were compared 
between two groups using the unpaired t-test, while for 
non-normally distributed data, the Wilcoxon test was 
performed to compare the statistical differences between 
the two groups. Spearman’s rank test was employed to 
test the correlation between the two groups of non-nor-
mally distributed data. The log-rank test was executed to 
examine the statistical differences in the results of sur-
vival analysis. A two-tailed p-value less than 0.05 was 
considered a statistically significant difference.

Results
Identification of DCs and related genes by scRNA-seq
The eleven samples were integrated using the Harmony 
algorithm, and the UMAP clustering of the eleven sam-
ples is shown in Fig.  2A. The results indicated that the 
batch effect between the samples had been minimized. 
We used marker genes to annotate cell clusters (Fig. 2B). 
Seven cell types were specified in LAT samples; these 
included endothelial cells, cDCs, epithelial cells, fibro-
blasts, macrophages, T cells, and mast cells. Nine cell 
types were identified in MPE samples; these included B 
cells, cDCs, epithelial cells, pDCs, fibroblasts, mono/

macrophages, neutrophils, plasma cells, and T cells. Fig-
ure  2C and D display the differentially expressed genes 
and proportions of each cell population. And a total of 
1448 DC-associated genes were identified from the two 
groups of samples (p < 0.05). We performed a pseudotime 
investigation on myeloid cells to better comprehend the 
status of DCs. The findings demonstrated that there were 
two nodes in the myeloid development trajectory in the 
LAT samples, and DCs first appeared at a later stage of 
development (Fig. 2E), while there was only one node in 
the MPE samples, and neutrophils, mono/macrophages 
and DCs all appeared at the same time (Fig. 2F).

Annotation of the biological functions of DCs and 
screening of DC-related genes
Cells in multicellular organisms primarily conduct bio-
logical functions through cytokine-mediated intercel-
lular interactions. In LAT samples, DCs predominantly 
interacted with macrophages as signal transmitters 
(Fig.  3A), whereas in MPE samples, they strongly con-
nected with both pDCs and macrophages (Fig. 3B). The 
interaction signals that were markedly activated between 
these cells were mainly associated with antigen presenta-
tion (Fig. 3C). We also found that LGALS9-CD44/CD45 
signaling was dramatically enhanced between DCs and 
monocytes/macrophages in MPE samples compared to 
LAT samples. One of the reasons for this phenomenon 
is the higher expression of the LGALS9 gene in the DCs 
of the MPE samples (Fig. 3D). Further analysis elucidated 
that the expression levels of HLA-D region genes were 
markedly elevated in DCs in the LAT and MPE samples 
(Fig. 3E).

Next, we established 0.56 as the optimal cutoff value for 
DC infiltration abundance in samples from the TCGA-
LUAD cohort (Additional file 1: Fig. S1A). A gene coex-
pression network of LUAD patients was built by the R 
package “WGCNA”. The soft threshold value of the adja-
cency matrix was set to 5, and the β value was selected 
as 10 (Additional file 1: Fig. S1B). After transforming the 
gene expression matrix of the TCGA-LUAD cohort into 
adjacency and topology matrices, genes were clustered 
based on the TOM matrix. Then, the modules with high 
similarity were merged by setting the shear height to 0.3, 
resulting in a total of 15 modules (Additional file 1: Fig 
S1C, D). There was a clear coexpression pattern among 
the genes of the brown module (Additional file 1: Fig. 
S1E), which were also highly correlated with the infiltra-
tion abundance of DCs (Additional file 1: Fig. S1F). After 
identifying 2100 DC-related genes using WGCNA, these 
genes intersected with the 1448 DC-related genes iden-
tified through the single-cell annotation of the LAT and 
MPE samples. As a result, a total of 454 DC-related genes 
were obtained (p < 0.001; Additional file 1: Fig. S1G). Sub-
sequent univariate Cox regression analysis was applied 

https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
https://cloud.genepattern.org/
https://cloud.genepattern.org/
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Fig. 2  Single-cell annotation and pseudotime analysis. (A) The uniform manifold approximation and projection (UMAP) plot showing the distribu-
tion of the 11 samples after removing the batch effects. (B) Bubble plot of marker gene expression for cells in lung adenocarcinoma tissue (LAT) and 
malignant pleural effusion (MPE) samples. (C, D) UMAP visualization of single-cell annotation results for LAT and MPE samples (left), volcano plots of dif-
ferentially expressed genes for each cell cluster (middle), and percentage of each cell cluster in each sample (right). Up_Highly: log2FC > 0 and adjusted 
p value < 0.01; Up_Lowly: log2FC > 0 and adjusted p value > = 0.01, adjusted p value < 0.05; Down_Lowly: log2FC < = 0 and adjusted p value > = 0.01, 
adjusted p value < 0.05; Down_Highly: log2FC < = 0 and adjusted p value < 0.01. (E, F) Trajectory analysis of myeloid cells in LAT and MPE samples
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Fig. 3  Analysis of cell-cell communications in single-cell samples. (A, B) Communication strength between cell clusters in lung adenocarcinoma tissue 
(LAT) and malignant pleural effusion (MPE) samples. (C) Bubble plot of cell-cell communication signals in LAT and MPE samples. (D) Violin plot of LGALS9 
gene expression in dendritic cells from LAT and MPE samples. (E) Violin plot of the expression differences of HLA-D region genes in LAT and MPE samples
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to these DC-related genes, leading to the identification 
of 166 genes that were significantly associated with the 
prognosis of LUAD patients (Additional file 1: Fig. S1H).

Integration of variables and construction of the prognostic 
signature
The expression data of 166 DC-related genes were 
extracted from five LUAD datasets as input data for 101 
machine learning models to establish the DCRGS. The 
C-index, which is widely utilized to assess the accuracy 
of models, was employed to evaluate the discrimination 
between the predicted value of the model and the actual 
value. In this study, by calculating the mean C-index of 
each model in five LUAD datasets, it was found that the 
mean C-index of the combination of CoxBoost and RSF 
models was higher than that of other machine learning 
model combinations, which indicated that the combina-
tion of CoxBoost and RSF models had the best prognos-
tic prediction performance for LUAD patients (Fig. 4A). 
Twenty feature genes with nonzero coefficients were 
screened in the CoxBoost algorithm (Fig.  4B), and then 
the RSF algorithm was used to rank the importance of 
these genes (Fig.  4C, D). To improve the generalization 
ability and clinical application convenience of the model, 
we extracted the top six most important genes, TAP2, 
PEBP1, PLAUR, STK17B, CXORF21, and MAP3K8. A 
DCRGS score was generated for each patient by utiliz-
ing the expression of the 6 key genes, weighted by their 
model regression coefficients (Additional file 1: Table 
S5). Patients were divided into low- and high-DCRGS 
subgroups using the median DCRGS score of the TCGA-
LUAD cohort. Kaplan–Meier survival analysis indicated 
prominently prolonged OS for the low-DCRGS subgroup 
in the training and validation cohorts (Fig.  4E-I). The 
mortality rate increased with increasing DCRGS score 
in the TCGA and GEO cohorts (Fig.  4J; Additional file 
1: Fig. S2), and the expression of TAP2 and PLAUR was 
positively associated with the DCRGS score, while the 
expression of PEBP1, STK17B, CXorf21, and MAP3K8 
was negatively associated with the DCRGS score 
(Fig.  4K). We further identified the expression of these 
six genes within the pseudotime trajectory of myeloid 
cells. In LAT samples, CXorf21, STK17B, and TAP2 
expression were elevated at later stages of the trajectory, 
whereas PEBP1 and PLAUR were expressed at low lev-
els. However, in MPE samples, PEBP1, STK17B, PLAUR 
and TAP2 were considerably expressed in the early stage 
of the trajectory, while MAP3K8 was highly expressed in 
the later stage (Fig. 4L).

Performance evaluation and application of DCRGS
To experimentally validate the performance of DCRGS, 
the expression of these six DC-related genes was assessed 
by RTqPCR in a clinical cohort of 12 patients with LUAD. 

The DCRGS score of the FAHGPU cohort was calcu-
lated and categorized employing a method identical 
to that of the TCGA-LUAD cohort. The expression of 
TAP2, PLAUR, and PEBP1 was not substantially differ-
ent between the two subgroups (Fig.  5A), probably due 
to the small sample size. However, it was verified that the 
expression of MAP3K8, STK17B and CXorf21 expression 
was elevated in the low-DCRGS subgroup. Moreover, 
time-dependent ROC curves examined the discrimina-
tion ability of the DCRGS, and the areas under the curves 
(AUCs) for 1-year, 2-year, 3-year, 4-year and 5-year sur-
vival were 0.705, 0.686, 0.709, 0.734 and 0.686 in TCGA-
LUAD; 0.702, 0.671, 0.661, 0.660, and 0.631 in GSE26939; 
0.669, 0.604, 0.598, 0.650, and 0.649 in GSE31210; 0.741, 
0.673, 0.660, 0.667, and 0.631 in GSE42127; and 0.649, 
0.677, 0.663, 0.710 and 0.762 in GSE72094 (Fig.  5B-F). 
We also compared the predictive capacity of DCRGS 
with some markers previously identified such as STK11, 
TP53, KRAS and EGFR mutations, as well as smoking 
status, sex, age, grade, T stage, N stage, M stage, and 
AJCC stage. Notably, DCRGS has the best robustness in 
prognostic assessment of LUAD patients (Fig.  5G). To 
further illustrate the stability and accuracy of DCRGS 
for prognostic prediction, we contrasted the predictive 
performance of DCRGS with that of 85 published prog-
nostic features. Univariate Cox regression analysis was 
employed to determine the connection between prog-
nostic features and the OS of LUAD patients. DCRGS 
was substantially associated with OS and a high DCRGS 
score indicated a profound detrimental effect on the 
prognosis of patients with LUAD (Additional file 1: Fig. 
S3A). Furthermore, DCRGS clearly outperformed other 
prognostic characteristics in all cohorts, according to the 
comparison of the C index (Additional file 1: Fig. S3B). 
Most features performed well in their training cohort but 
poorly in the external cohorts; this bias was caused by the 
model being overfit.

In the TCGA-LUAD cohort, univariate and multivari-
ate Cox regression analyzes elucidated that DCRGS was 
an independent prognostic factor (Fig. 6A, B). A nomo-
gram constructed based on DCRGS and clinical features 
were applied to predict 1-year, 3-year, and 5-year OS 
rates for the sixth patient of the cohort with AUCs of 
0.935, 0.765, and 0.553, respectively (Fig.  6C). Calibra-
tion curves, a means of evaluating the performance of 
the nomogram, indicated significant consistency between 
the anticipated and actual values of the OS rates for 1 
year, 3 year, and 5 years (Fig. 6D). A remarkable discov-
ery was the superior accuracy of DCRGS over other 
clinical features of the C-index dynamic change profile 
to predict 5-year OS (Fig.  6E). Decision curve analysis 
(DCA) demonstrated that the nomogram had an opti-
mal net benefit with a threshold probability between 0.13 
and 0.67 (Fig. 6F). Furthermore, we developed an online 
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Fig. 4  Machine learning algorithms used to construct DCRGS. (A) Heatmap showing the C-index of the 101 machine learning models. (B) Visualization 
of coefficients in Coxboost model. (C) Relationship between the number of trees and the error rate in the RSF model. (D) Importance ranking of the top 
20 genes in the RSF model. (E-I) Survival analysis of the low- and high-DCRGS subgroups in five cohorts. (J) Risk factor linkage plots demonstrate the 
overall survival of the TCGA-LUAD cohort and the expression levels of prognostic genes in response to DCRGS. (K) Expression levels of the six prognostic 
genes in the developmental trajectory of myeloid cells. (L) Jitter plots showing the expression level of six prognostic genes changing with pseudotime
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application with R software to predict the OS rates of 
LUAD patients based on their age, sex, T stage, N stage, 
M stage, and the DCRGS to make the nomogram easier 
to apply in the clinic ​(​​​h​t​​t​p​s​​:​/​/​k​​a​p​​o​k​s​h​i​n​y​.​s​h​i​n​y​a​p​p​s​.​i​o​/​D​
C​R​G​S​_​L​U​A​D​_​N​o​m​o​g​r​a​m​/​​​​​)​.​​

Immune landscape and biological functions of DCRGS
The immune microenvironment plays an important role 
in tumor development. We used ESTIMATE, xcell, ssG-
SEA, MCP counts and TIMER2.0 to infer the abundance 

of infiltrating immune cells between the low- and high-
DCRGS subgroups (Fig.  7A). Surprisingly, we discov-
ered that the increase in DCRGS was accompanied by a 
gradual decline in the immuno-infiltrating abundance. 
The abundance of DCs, T cells, and macrophages was 
markedly reduced in the high-DCRGS subgroup, while 
the abundance of Th2 cells increased. This finding was 
further confirmed in 4 cohorts from GEO (Additional file 
1: Figs. S4, 5).

Fig. 5  Performance assessment of DCRGS. (A) RT‒qPCR was utilized to examine the expression levels of 6 prognostic genes in clinical samples. (B-F) ROC 
curves demonstrate the predictive performance of DCRGS in five cohorts. (G) C-index bar graph of DCRGS and clinical characteristics of the five cohorts 
on prognostic assessment. “ns”: not significant; “*”: P < 0.05; “**”: P < 0.01
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To better understand the biological mechanisms under-
lying the poorer outcomes of patients with high DCRGS, 
15 tumor-associated gene sets were utilized for ssGSEA, 
which revealed that DNA damage repair pathways (p53 
signaling, mismatch repair, homologous recombination) 

and oncogenic pathways (Wnt signaling, cell cycle) were 
significantly upregulated in the high-DCRGS subgroup, 
whereas immune-associated pathways (T-cell and B-cell 
receptor signaling, Fcγ R-mediated phagocytosis) were 
considerably enriched in the low-DCRGS subgroup 

Fig. 6  Construction of the nomogram. (A, B) Univariate (left) and multivariate (right) Cox regression analysis using DCRGS, gender, stage, T, N and M. (C) 
Nomogram established based on DCRGS and other clinical characteristics. (D) Calibration curves assessing the 1-, 3-, and 5-year predictive accuracy of the 
Nomogram. (E) Trend of the C index for 5-year prognostic prediction of clinical features. (F) Decision curves of DCRGS and nomogram
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(Fig.  7B). Furthermore, the high-DCRGS subgroup 
showed a strong activation of the tumor metabolism, pro-
liferation, and metastasis-related pathways obtained from 
the hallmark gene sets (Fig. 7C). To learn more about the 
molecular mechanisms by which DCRGS influenced the 
prognosis, GO enrichment analysis was performed that 
included the biological process (BP), cellular compo-
nent (CC) and molecular function (MF). The top 10 GO 
terms in both subgroups were mostly linked to biological 

processes involving humoral immunity (Fig. 7D). Immu-
nomodulatory factor expression levels were also strongly 
correlated with DCRGS. In the high-DCRGS subgroup, 
the expression levels of HLA-D-region genes, cell adhe-
sion molecules, costimulatory molecules, and ligand- and 
receptor-related molecules were all noticeably decreased, 
but the expression of the coinhibitory molecules CD276 
and PDCD1LG2 was elevated (Fig.  7E). Surprisingly, 
the low-DCRGS subgroup had dramatically enhanced 

Fig. 7  Biological characterization of the low and high DCRGS subgroups. (A) Five algorithms inferred the infiltration abundance of immune cells. (B) 
Heatmap of the expression levels of 15 pathways in the low- and high-DCRGS subgroups. (C) Enrichment levels of Hallmarks pathways associated with 
tumor metabolism, proliferation and metastasis in both subgroups. (D) GO enrichment analysis of Molecular Function (MF), Biological Process (BP) and 
Cell Component (CC) in both subgroups. (E) Heatmap of the expression levels of immunomodulatory factors in the two subgroups. “ns”: not significant; 
“*”: P < 0.05; “**”: P < 0.01; “***”: P < 0.001; “****”: P < 0.0001
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CTLA-4 expression, indicating that these patients would 
benefit more from anti-CTLA-4 ICI treatment. Further-
more, the GEO cohort supported these results (Addi-
tional file 1: Fig. S6).

SNV data were employed to examine the distribution 
of somatic mutations in both subgroups, and 20 highly 
mutated genes associated with DCRGS were identified 
(Fig. 8A). Fisher’s test identified 18 differentially mutated 

genes (p < 0.01) (Fig.  8B) with higher mutation rates 
in the high-DCRGS subgroup, including TP53 (63%), 
RP1L1 (25%), PLPPR4 (17%) and PCSK5 (9%) (Fig.  8C). 
We found that TMB was positively correlated with the 
DCRGS score and that TMB was significantly higher in 
the high DCRGS subgroup (Fig.  8D). All differentially 
mutated genes were subjected to GSEA to further elu-
cidate biological characteristics (Fig.  8E). The results 

Fig. 8  Analysis of somatic mutation and copy number variation (CNV). (A) Waterfall plots of the top 20 mutated genes in the low- and high-DCRGS 
subgroups. (B, C) Forest and bar graphs of differentially mutated genes in both subgroups. (D) Variations in the mutation loads of the two subgroups 
(left) and the connection between the mutation loads and DCRGS (right); denser points are shown by redder colors in the plot. (E) GSEA of differentially 
mutated genes. (F) Violin plots of amplification and deletion mutations between the two subgroups. (G) CNV plot demonstrating the gistic score and the 
mutation frequency distribution in both subgroups
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revealed that the NPM1 signature, M phase, EZH2 tar-
gets, and HYPOXIA not via KDM3A pathways were 
significantly enriched. These pathways facilitate immu-
nological remodeling, inhibition of antigen presentation, 
suppression of immune cell activity, and cell division, 
which promote immune escape and tumor growth [30–
32]. Given that CNVs might cause genome variability, 
the correlation between DCRGS and CNV was further 
examined. A striking increase in chromosomal amplifi-
cations and deletions was observed in the high-DCRGS 
subgroup (Fig. 8F). To further clarify the CNVs occurring 
on each chromosome, Fig. 8G depicts the distribution of 
CNV in both subgroups.

Immunotherapy sensitivity prediction and drug screening
TCIA was used to collect medication data for the TCGA-
LUAD cohort to better understand the connection 
between DCRGS and drug sensitivity. Immunotherapy 
response analysis revealed an elevated sensitivity to anti-
CTLA4 monotherapy in the low-DCRGS subgroup, but 
there were no discernible differences in either subgroup 
for the combination of anti-PD-1 and anti-CTLA4 or 
anti-PD-1 monotherapy (Fig.  9A). Interestingly, the 
high-DCRGS subgroup responded better to paclitaxel 
(Fig.  9B). Next, we analyzed the relationship between 
the prognostic signature and the traditional therapeutic 
targets of LUAD (Fig.  9C). To further identify potential 
target drugs, we compared the half-maximum inhibitory 
concentration of each drug (IC50) in both subgroups and 
identified those with notable differences (p < 0.001). Fig-
ure 9D explains the relationship between drug sensitivity 
and DCRGS, with the eight most sensitive drugs high-
lighted. Figure 9E demonstrates the correlation between 
these drugs and DCRGS. We found that the IC50s of 
foretinib, MK-1775, dasatinib, BI-2536, PD0325901 and 
AZD7762 were lower in the high-DCRGS subgroup, 
while the IC50s of BMS-754,807 and AZD8055 were 
higher.

Discussion
In the present study, scRNA-seq and bulk-seq data were 
utilized to elucidate the function of DCs within the 
tumor microenvironment. A DCRGS was developed 
with machine learning algorithms to predict the prog-
nosis and response to immunotherapy in patients with 
LUAD. A significant upregulation of the LGALS9-CD44/
CD45 ligand-receptor pair signaling was detected in DCs 
within MPE, which is closely correlated with an unfavor-
able prognosis in LUAD patients. Furthermore, by imple-
menting machine learning algorithms, we have identified 
six crucial DC-related genes. Based on these genes, we 
subsequently developed a prognosis prediction model, 
DCRGS, capable of predicting the prognosis of LUAD 
patients. The stability and robustness of our DCRGS 

were validated both internally and externally, exhibit-
ing excellent performance. Compared to 85 previously 
published prognostic characteristics for LUAD patients, 
our DCRGS demonstrated a superior generalizability. 
Furthermore, our analysis elucidated that the DCRGS 
possesses the capability to evaluate the inhibitory sta-
tus of TME, ascertain the activity of tumor-associated 
pathways, distinguish between TMB and CNV load lev-
els, and recognize potential therapeutic agents. Con-
sequently, derived from these findings, our study holds 
significant implications for advancing the field of progno-
sis prediction and personalized medicine in the context 
of LUAD.

DCs, one type of specialized APCs, have substantially 
higher antigen-presenting activity than macrophages and 
B cells and build an important bridge between adaptive 
and innate immunity [33]. Previous studies have demon-
strated that a significant decrease in the activity of cyto-
toxic T lymphocyte-mediated antitumor activity is linked 
to LGALS9 overexpression in DCs, which has been 
shown to limit the functions of antigen recognition, pro-
cessing, and presentation in DCs [34, 35]. The possibil-
ity of communication between cDCs and T cells via the 
LGALS9-CD44/CD45 ligand‒receptor pair was signifi-
cantly higher in the MPE samples of this study than in the 
LAT samples, which strongly explains the poor prognosis 
of LUAD patients who suffered from MPE. Furthermore, 
by applying CellChat, we revealed that HLA-D region 
gene expression was significantly elevated in DCs from 
LAT and MPE samples and engaged in macrophage-DC 
interactions. The antigen presentation function of intra-
tumor HLA-II is dominated primarily by dedicated APCs 
[36]. DCs interact with CD169 + macrophages, which are 
responsible for capturing antigens, and then present the 
picked-up antigens to T cells, thereby activating them 
[37]. These results indicate that DCs play an important 
role in TME.

Through the combination of CoxBoost and RSF, a set 
of six pivotal genes (CXorf21, MAP3K8, PEBP1, PLAUR, 
STK17B, and TAP2) have been identified as significant 
prognostic indicators for patients with LUAD. CXorf21, 
an immune-related gene, was renamed Toll-like recep-
tor adapter interacting with SLC15A4 in the lysosome 
(TASL), which is expressed in B cells, CD33 + monocytes, 
dendritic cells and macrophages [38, 39]. MAP3K8 is 
a LUAD transforming gene whose aberrant transcrip-
tional regulation, gene amplification, and mutations are 
implicated in the development of a variety of cancers, 
including thymoma, lymphoma, breast cancer, nasopha-
ryngeal carcinoma and lung cancer [40]. According to 
some research, MAP3K8 can be utilized as a prognostic 
marker for LUAD patients [41]. The value of MAP3K8 
in predicting the prognosis of LUAD patients was also 
verified by this study. PEBP1, known as RAF kinase 
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Fig. 9  Analysis of immunotherapy sensitivity and drug screening. (A) Comparison of sensitivity to anti-CTLA-4 and anti-PD-1 inhibitors in low- and 
high-DCRGS subgroups. (B) Differences in response to chemotherapeutic agents in both subgroups. NR: no response; SD: stable disease; PD: progressive 
disease; R: response; PR: partial response; CR: complete response. (C) Relationship of the commonly used target genes for LUAD with prognostic genes 
and DCRGS. (D) Prediction of the drug IC50 in the two subgroups. (E) Correlation between IC50 and DCRGS. The higher the density of dots, the redder 
the color. “***”: P < 0.001; “****”: P < 0.0001
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inhibitory protein (RKIP), is recognized as a tumor sup-
pressor [42, 43], antagonizes the activity of the B-RAF 
isoform kinase [44] and inhibits a variety of tumor cell 
biological processes, including tumor cell growth and 
invasion [45–47], epithelial to mesenchymal transi-
tion (EMT) [48] and metastasis [49]. By inhibiting the 
HMGA2 signaling pathway, PEBP1 expressed in the TME 
suppresses macrophage chemokine production, which 
in turn reduces the infiltration abundance and meta-
static potential of TAMs [50]. Furthermore, PEBP1, a 
novel effector of the apoptosis-inducing signaling path-
way, was found to be a prognostic marker for LUAD 
patients [51–53]. Low expression of PEBP1 is related to 
tumor metastasis and the poor prognosis. By activating 
plasma fibrinogen and degrading the extracellular matrix, 
PLAUR contributes to biological activities such as cell 
migration, adhesion, and proliferation [54, 55]. Inhibit-
ing PLAUR expression can also suppress the metastasis 
of lung cancer to lymph nodes [56]. The progression of 
acute myeloid leukemia [57], chronic lymphocytic leu-
kemia [58] and colorectal cancer [59] is suppressed by 
upregulation of STK17B, a member of the death-asso-
ciated protein kinase (DAPK) family [60]. However, the 
function of STK17B in other cancers is highly contested. 
Hepatocellular carcinoma (HCC) has been shown to 
have a greatly increased STK17B expression, and sup-
pression of STK17B expression significantly inhibits 
HCC growth and metastasis [61]. The tumorigenic abil-
ity of cancer cells is inhibited when STK17B expression 
is reduced in breast cancer [62]. This study discovered 
that patients in the low-DCRGS subgroup had a higher 
STK17B expression and noticeably longer OS than 
those in the high-DCRGS subgroup, illustrating that low 
STK17B expression is associated with a poor prognosis 
in LUAD patients and that reduced STK17B expression 
can be identified as a biomarker of poor prognosis in 
LUAD patients. TAP2 is one of the crucial genes in the 
MHC class I antigen presentation pathway. The protein 
encoded by TAP2 serves the processing of endogenous 
antigens. An important mechanism of tumor immune 
escape is the increased mutation frequency of TAP2 with 
altered DNA damage response and repair (DDR), which 
in turn causes the antigen presentation efficacy to decline 
[63]. We revealed that patients with high expression of 
TAP2 exhibited a worse prognosis than those with low 
expression. MAP3K8, STK17B, and CXorf21 expression 
trends in the low- and high-DCRGS subgroups were ini-
tially confirmed by RTqPCR to be compatible with the 
findings of the bioinformatics analysis. The main source 
of bias may be the low number of LAT samples, given 
that the expression levels of TAP2, PLAUR, and PEBP1 in 
both subgroups were not clearly distinguished.

Six key genes were used to create a novel prognos-
tic signature for prognostic signature for LUAD called 

DCRGS, and four distinct GEO cohorts were used to 
evaluate its robustness and stability for the prognostic 
prediction of LUAD patients. Additionally, clinical fea-
tures, such as STK11, TP53, KRAS, and EGFR mutations, 
smoking status, sex, age, stage, T stage, N stage, and M 
stage, had a prominent impact on the prognosis of LUAD 
patients; however, it is noteworthy that the DCRGS oper-
ated independently of these clinical features. The find-
ings of the C-index assessment showed that DCRGS 
performed better compared to these clinical features 
for prognostic prediction. Additionally, based on the 
DCRGS, we built an online interactive tool for predicting 
LUAD patient prognosis in a more practical and under-
standable manner.

To better understand the prognostic value of DCRGS, 
we separated the TCGA-LUAD cohort into low- and 
high-DCRGS subgroups and examined the immune cell 
infiltration in each subgroup. The abundance of infiltrat-
ing DCs, macrophages, and CD8 + T cells in the high-
DCRGS subgroup was generally lower than that in the 
low-DCRGS subgroup, according to five algorithmic 
extrapolations. Both DCs and macrophages are APCs, 
but DCs with higher antigen presentation efficiency ben-
efit from being professional APCs. Macrophages phago-
cytose and process tumor antigens, collaborating with 
DCs to deliver antigens to T cells. Then, effector T cells 
exert antitumor effects, with CD8 + T cells being a cru-
cial component of this process. In this study, enrichment 
analysis of tumor-associated pathways revealed that the 
high-DCRGS subgroup was considerably enriched for 
pathways involved in DNA damage repair, oncogenesis 
and tumor metabolism, proliferation and metastasis. GO 
enrichment analysis showed that differentially expressed 
genes were enriched for immune-related terms. Fur-
thermore, in the TME of the high-DCRGS subgroup, 
the expression of coinhibitory molecules was substan-
tially increased, whereas that of antigen presentation, cell 
adhesion factors, and costimulatory molecules was mark-
edly reduced. However, these elements are responsible 
for the development of immune rejection or immune 
desert [64, 65]. We also discovered a correlation between 
DCRGS and both the somatic mutation burden and the 
CNV load. Differentially mutated genes in the high-
DCRGS subgroup were markedly enriched in tumor cell 
division, growth, invasion, and immune escape pathways. 
These findings provide convincing evidence for the bio-
logical factors driving the poor prognosis of patients with 
high DCRGS, as well as the value of DCRGS in predicting 
patient prognosis.

LUAD patients with driver mutations show vary-
ing degrees of benefit from targeted therapy, but most 
develop resistance soon after administration [66, 67], at 
which point patients face the dilemma of being drug-
free. Immunotherapy has become a new breakthrough 
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in tumor treatment; however, only a small proportion of 
patients with LUAD receive long-term clinical benefits, 
and the majority of patients experience disease progres-
sion due to primary or acquired resistance during or 
after ICI discontinuation [68]. Drug sensitivity analysis 
of TCGA-LUAD patients based on DCRGS revealed that 
patients with low DCRGS showed a favorable response 
to anti-CTLA4 therapy, which may be associated with 
higher levels of immune cell infiltration abundance and 
CTLA4 expression in the low-DCRGS subgroup. Several 
studies have demonstrated that patients with massive 
infiltration of immune cells, especially those with very 
high levels of T cells, responded better to ICI treatment 
[69, 70]. Furthermore, we found that the high-DCRGS 
subgroup has a favorable response to chemotherapy 
besides targeted therapy. Notably, there is a subtle cor-
relation between DCRGS and the oncogenic drivers of 
LUAD. DCRGS shows the positive correlations with 
expression of KRAS and ERBB2. Studies have illustrated 
that overexpression of ERBB2 and KRAS in LUAD is 
linked to tumor invasion and adverse prognosis [71, 72].

The DCRGS signature, constructed by machine learn-
ing algorithms, can be executed to predict the prognosis 
of LUAD patients and potential drugs by detecting the 
expression of six key genes. Although DCRGS shows 
prominent convenience and accuracy with high clinical 
translational value, this study still has limitations. First, 
more research is needed to understand how LGALS9, 
which is highly expressed in MPE samples, facilitates the 
poor prognosis of LUAD patients. Second, before apply-
ing the findings of big data analysis to the clinic, an ade-
quate number of clinical samples must be used to further 
confirm them. Finally, the efficacy and safety of several 
medications still need to be examined in clinical trials, 
although the treatments suggested in this study offer 
more options for patients with LUAD, particularly those 
who have developed drug resistance.

Conclusion
In summary, we identify DC-related genes using scRNA-
seq and bulk-seq and develop a machine learning-
based prognostic signature consisting of the top six 
most important DC-related genes, i.e. TAP2, PEBP1, 
PLAUR, STK17B, CXORF21, and MAP3K8. The model 
we developed, DCRGS, possesses an exceptional prog-
nosis predictive capacity for patients with LUAD, as 
validated by numerous independent datasets. DCRGS 
can also be used to identify the immune status of TME 
and assist in screening drugs for LUAD patients. Inter-
estingly, we unexpectedly discovered that the signaling 
of the LGALS9-CD44 / CD45 receptor pair was dra-
matically activated in MPE samples, which is correlated 
with a poor prognosis. We believe that the results of this 
study offer a wealth of valuable information on clinical 

prognostic assessment, quantitative risk management, 
and personalized clinical treatment of LUAD patients.
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