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Abstract
Background  Camptothecin (CPT) derivatives are widely used in cancer therapies, but their efficacy can be 
attenuated by resistance mechanisms such as autophagy. We recently showed that the aniline compound 
4-[4-(4-aminophenoxy)-2,3,5,6-tetrafluorophenoxy] aniline (TFPA) can potently increase CPT cytotoxicity against 
non-small cell lung cancer (NSCLC) cells. The purpose of this study was to evaluate whether TFPA improves CPT-based 
chemotherapy by modulating autophagy and other cell death pathways in NSCLC models.

Methods  Two NSCLC cell lines, A549 and H1299, were tested. The synergism of CPT and TFPA was evaluated by 
trypan blue exclusion and colony formation assays. Annexin V staining was used for the detection of apoptosis, 
and autophagy was assessed by acridine orange staining and immunofluorescence. Flow cytometry-based 
dihydroethidium staining was used to assess oxidative stress. Changes in the expression of apoptosis-associated 
factors and autophagy-associated factors were determined by Western blot assays. The synergism of CPT and TFPA 
was validated using a zebrafish xenograft assay.

Results  The accumulation of markers for lysosomal expansion (LAMP2) and degradation (cathepsin D) and markers 
for autophagosome formation (LC3B-II) suggested that blockage of autolysosome formation might impair autophagy 
in CPT-treated NSCLC cells and subsequently lead to autophagic cell death. Cotreatment with TFPA and CPT induced 
cell death by increasing the production of reactive oxygen species, which contributed to autophagic impairment and 
eventually apoptotic cell death in NSCLC cells.

Conclusions  Our present work suggests that increased autophagic impairment induced by the combination of CPT 
and TFPA contributes to the apoptotic cell death of lung cancer cells.
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Background
Lung cancer is one of the leading causes of death in the 
United States and Asia [1, 2]. Non-small cell lung can-
cer (NSCLC) is the most common type of lung cancer, 
and it is estimated that more than 80% of lung cancers 
are NSCLC. In recent decades, with advances in medi-
cine, different therapies have been developed according 
to the stage of NSCLC. To date, chemotherapy remains 
the most common treatment for NSCLC patients. Sev-
eral anti-lung cancer drugs, such as cisplatin [3], irino-
tecan [4], and topotecan [5], have been used for cancer 
treatment and have shown beneficial effects on cancer 
patients. Nevertheless, the development of chemoresis-
tance after monotherapy for NSCLC patients remains a 
major concern in the field because it not only attenuates 
the efficacy of the drug but also contributes to poor prog-
nosis and high recurrence rates [6–8]. Thus, the develop-
ment of combination chemotherapy, treatment with two 
or more drugs, has been evolving as one of the main anti-
cancer strategies designed to improve the survival rate of 
various cancers, including NSCLC [5, 9, 10]. For example, 
Niho et al.. found that irinotecan enhances the efficacy 
of cisplatin in large-cell neuroendocrine carcinoma [11]. 
Therefore, combination chemotherapy is considered a 
promising strategy for lung cancer treatment.

Camptothecin (CPT), a cytotoxic quinoline alkaloid 
compound, was originally isolated from Camptotheca 
acuminata [12]. CPT and its derivatives are widely used 
to treat cancers, including lung cancer [13], liver can-
cer [14], and colorectal cancer [15], because they have 
been shown to exert multiple anticancer effects, includ-
ing suppression of proliferative activity [16], induction of 
apoptosis [16, 17], and alteration of autophagy responses 
[18]. However, drug resistance limits the efficacy of 
CPT-based drugs, such as topotecan and irinotecan, in 
NSCLC patients [19]. Some studies have indicated that 
autophagy might be associated with drug resistance in 
cancer cells, such as lung cancer cells [20, 21]. Impor-
tantly, in colorectal and lung cancer cells, a low dose of 
CPT induces protective autophagy and concomitantly 
attenuates the induction of apoptosis in cancer cells [22, 
23]. Recent studies have also suggested that the combina-
tion of autophagy modulators with chemotherapy could 
be a novel approach for developing future anti-lung-can-
cer strategies [22, 24, 25].

Autophagy is a highly conserved degradation system 
in eukaryotic cells that has been shown to eliminate 
unnecessary organelles and damaged proteins [26]. The 
autophagy process includes at least four stages: initiation, 
elongation, maturation, fusion of lysosomes and autopha-
gosomes to form autolysosomes, and final degradation 
of damaged organelles or macromolecules [27]. Recent 
studies have demonstrated that autophagy may be cor-
related with the chemoresistance of cancer cells [28]. 

In two separate studies, researchers have demonstrated 
that CPT- or topotecan-induced autophagy promotes 
colorectal cancer cell survival [22, 29], which suggests 
that chemotherapy-induced autophagy might be a com-
plementary survival mechanism that protects cancer cells 
from apoptosis. Accumulating evidence suggests that dis-
ruption of the autophagy process may further enhance 
chemotherapy-induced apoptosis in cancer cells. For 
instance, the inhibition of autophagy by 3-methyladenine 
(3-MA) enhances cisplatin-induced apoptosis in A549 
lung cancer cells [30]. Additionally, chloroquine (CQ), an 
autophagy inhibitor, enhances CPT-induced apoptosis 
in two colorectal cancer cell lines, HCT116 and RKO, by 
disrupting the autophagy process [22].

Aniline, a primary aromatic amine, has been reported 
to exert various bioactivities, including anticancer [31], 
antifungal [32], and anti-inflammatory activities [33]. 
An aniline-containing compound, 11β (CAS 865070-37-
7), reportedly induces apoptosis in both prostate cancer 
LNCaP cells [34] and cervical cancer HeLa cells [35]. 
Another aniline derivative, acetaminophen, has been 
reported to induce cytotoxicity in hepatocellular can-
cer HepG2 cells and lead to cell death [36, 37]. Combi-
nation therapy with aniline derivatives and other drugs 
was recently shown to significantly enhance the efficacy 
of monotherapy. One study identified that 4-(2-cyclo-
hexylethoxy) aniline (IM3829) as an aniline derivative 
that enhances radiation-induced cell death in human 
lung cancer H1299 cells [38]. In addition, Bonnet et al.. 
reported that pyridyl aniline thiazole, an aniline-contain-
ing compound, exerts inhibitory effects on renal carci-
noma RCC4 cells by modulating autophagy processes 
[39].

The induction of autophagy by chemotherapy has been 
reported to protect cancer cells from the cytotoxic effect 
of drugs [40], such as CPT or its derivatives [22, 41, 42]. 
To overcome these issues, the inhibition or disruption 
of the autophagy process has been indicated to enhance 
chemotherapy-induced apoptosis of cancer cells [43].

In this study, we identified the aniline-containing com-
pound 4-[4-(4-aminophenoxy)-2356-tetrafluorophenoxy] 
aniline (TFPA), and using both a cell model and a zebraf-
ish xenograft model, we found that this compound has 
low cytotoxicity and enhances cell death in CPT-treated 
NSCLC cells. Furthermore, TFPA enhanced the CPT-
induced proliferation inhibition and cell death in NSCLC 
cells by modulating the level of endogenous reactive oxy-
gen species (ROS) and subsequently impaired autophagy, 
as evidenced by the nuclear retention of microtubule-
associated protein 1 light chain 3 β (LC3B).
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Materials and methods
Preparation of CPT and TFPA
TFPA was purchased from the chemical supplier 
Enamine, Ltd. (Kiev, Ukraine). CPT was purchased from 
Sigma‒Aldrich (St. Louis, MO, USA). Both TFPA and 
CPT were dissolved in dimethyl sulfoxide (DMSO) (less 
than 0.1% v/v) immediately before the assays.

Reagents
Dulbecco’s modified Eagle’s medium (DMEM) with high 
glucose, fetal bovine serum (FBS), trypan blue, DMSO 
and the antibiotics streptomycin and penicillin G were 
purchased from Gibco BRL (Gaithersburg, MD, USA). 
Acridine orange (AO), ribonuclease A (RNase A) and 
phosphate-buffered saline (PBS) were purchased from 
Sigma‒Aldrich. Antibodies against cleaved caspase-9, 
cleaved caspase-3 and LC3B were purchased from Cell 
Signaling Technology (#9501, #9664, and #2775, respec-
tively, San Jose, CA, USA). A LAMP2 antibody was pur-
chased from Abcam (#ab125068, Cambridge, UK). A 
Cathepsin D antibody was purchased from ABclonal 
(#A19680, Düsseldorf, Germany). A glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) antibody was 
obtained from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA). Both anti-mouse and anti-rabbit IgG perox-
idase-conjugated secondary antibodies were purchased 
from Leadgene Biomedical (#20102 and #20202, respec-
tively, Tainan, Taiwan). An Annexin V-fluorescein iso-
thiocyanate (FITC) detection kit was purchased from 
Strong Biotech Co. (Taipei, Taiwan).

Cell culture
Two human NSCLC cell lines, A549 (adenocarcinoma, 
p53 wild-type) and H1299 (large cell carcinoma, p53 
null), were obtained from American Type Culture Collec-
tion (ATCC, Manassas, VA, USA). The cells were main-
tained in DMEM: F-12 (3:2) supplemented with 8% FBS, 
2 mM glutamine, and antibiotics (100 units/ml penicil-
lin and 100 µg/ml streptomycin) at 37 °C in a humidified 
atmosphere of 5% CO2.

Assessment of proliferation inhibition
A549 and H1299 cells (3 × 104 cells per well in a 12-well 
plate) were seeded and then treated with either DMSO 
(vehicle) or CPT alone or in combination for 24  h and 
48  h. After incubation, the cells were stained with 0.2% 
trypan blue in PBS and counted using a Countess™ auto-
matic cell counter (Invitrogen, Eugene, OR, USA) [44].

Colony formation assay
NSCLC A549 and H1299 cells (4 × 102) were seeded in 
12-well plates and cultured with the indicated concentra-
tions of CPT and TFPA alone or in combination for 11 
days. The cells were fixed with 4% paraformaldehyde and 

then stained with 5% Giemsa overnight. Images of each 
well were scanned, and the individual colony areas were 
counted [45].

Assessment of apoptosis
An annexin V/PI staining assay was conducted to detect 
the externalization of phosphatidylserine (PS) from the 
cellular membrane, a hallmark of apoptosis. In brief, 
1 × 105 A549 cells were seeded into a 6-well plate and 
treated with the indicated concentrations of CPT (0.5 
µM) and TFPA (10 µM) alone or in combination for 24 h 
and 48 h. Subsequently, the cells were harvested, stained 
with annexin V/PI (#AVK250, Strong Biotech Corpora-
tion, Taipei, Taiwan), and analyzed using an Accuri C6 
flow cytometer (BD Biosciences, San Jose, CA, USA).

Assessment of autophagy
To detect the formation of acidic vesicular organelles 
(AVOs), a morphological feature of autophagy, AO stain-
ing was conducted as previously described [46]. Briefly, 
A549 cells were seeded and incubated with the indicated 
concentrations of CPT (0.5 µM) and TFPA (10 µM) alone 
or in combination for 24 h. Subsequently, the cells were 
stained with AO (1 µg/mL) for 20 min and scanned with 
a fluorescence microscope (Olympus, Tokyo, Japan). 
Green AO fluorescence (510–530  nm) indicates nuclei, 
and red AO fluorescence (> 650  nm) indicates acidic 
compartments.

Immunofluorescence assay
Briefly, A549 cells were seeded into 24-well plates. After 
incubation, the cells were fixed with 4% paraformalde-
hyde and then permeabilized with 0.5% (v/v) Tween-
20 in PBS. The cells were blocked with 1% (v/v) bovine 
serum albumin (BSA) in PBS as the blocking solution 
for 20  min and then incubated with the primary anti-
body against LC3B in blocking solution overnight at 
4  °C. Subsequently, the cells were washed twice with 
blocking solution for 5  min and incubated with Alexa 
Fluor 555-conjugated goat anti-mouse immunoglobulin 
G (Molecular Probes, Invitrogen, Carlsbad, CA, USA). 
Images were analyzed by fluorescence microscopy with 
the TissueFAXS system (TissueGnostics GmbH, Vienna, 
Austria) [25].

Confocal microscopy
Briefly, 3 × 104 A549 cells were seeded into 24-well plates 
with 12-mm glass coverslips (Marienfeld Laboratory, 
Lauda-Königshofen, Germany) and then incubated with 
the indicated concentrations of CPT and TFPA alone or 
in combination for 24 h. After incubation, the cells were 
fixed with formaldehyde, permeabilized with 0.5% (v/v) 
Tween-20 and then incubated with blocking solution 
(1% BSA). The cells were incubated with an anti-LC3B 
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antibody and then Alexa Fluor 488-conjugated goat 
anti-rabbit secondary antibody (Molecular Probes, Invi-
trogen, Carlsbad, CA, USA). The slides were mounted 
with Vectashield H-1000 fluorescent mounting medium 
(Vector Laboratories, Burlingame, CA, USA). Immuno-
fluorescence images were obtained with a confocal laser 
scanning microscope system (Olympus, Hamburg, Ger-
many) [47].

Assessment of oxidative stress
The fluorescent dye DHE (MCH100111, Merck Millipore, 
Darmstadt, Germany) was used to evaluate the redox 
state of intracellular superoxide (O2.−). In brief, 1 × 105 
A549 cells were seeded in a 6-well plate and treated with 
0.5 µΜ CPT and 10 µΜ TFPA alone or in combination 
for 6 h. For the assessment of ROS scavengers, the cells 
were pretreated with 2 mM N-acetyl-L-cysteine (NAC, 
A9165, Sigma‒Aldrich), an ROS scavenger, for 3  h and 
then subjected to the indicated treatments. The cells were 
subsequently stained with 1 µM DHE and incubated at 
37  °C for 30  min. After incubation, the cells were har-
vested, washed twice with 1 ml of PBS, and resuspended 
in 0.2 ml of PBS. The cells were subsequently analyzed by 
flow cytometry with a Muse™ Cell Analyzer (Merck Mil-
lipore, Billerica, MA, USA). In the assay, we stained cells 
with dihydroethidium (DHE), a fluorescence dye sensitive 
to oxidative reactions, to quantitatively assess intracellu-
lar superoxide radicals using a flow cytometer. The areas 
M2 and M1 showed that all the cells were there (100%), 
with M2 showing the percentage of naturally occurring 
superoxide radicals compared to the negative control, 
which represented cells that did not have DHE staining.

Western blotting assay
Western blotting assays were conducted to detect 
changes in apoptosis- and autophagy-related proteins 
according to our previous study [48]. In brief, the har-
vested cells were lysed in RIPA buffer (Millipore, Tem-
ecula, CA, USA). Thirty micrograms of protein lysate 
was loaded on 10% SDS-polyacrylamide gel electropho-
resis (SDS‒PAGE) gels, and the proteins were then elec-
trotransferred onto a polyvinylidene fluoride (PVDF) 
membrane (Pall Corporation, East Hills, NY, USA). The 
PVDF membrane was blocked with 5% nonfat milk and 
incubated with primary antibodies and then with the cor-
responding secondary antibodies. An enhanced chemilu-
minescence (ECL) detection kit (Advansta Corp., Menlo 
Park, CA, USA) was subsequently used to detect the sig-
nals of the specific proteins. The protein intensity was 
first normalized to the internal control, and then the rela-
tive fold changes in the protein levels were normalized by 
the untreated control group.

Zebrafish xenograft assay
A zebrafish-based tumor xenograft assay was conducted 
to confirm the synergistic inhibitory effect of the CPT 
and TFPA combination on the growth of NSCLC cells. 
The use and maintenance of zebrafish complied with 
the principles of the 3 Rs (replacement, refinement, and 
reduction). In brief, 48 h postfertilization (hpf) zebrafish 
larvae were anesthetized with 0.01% tricaine, and A549 
cells were labeled with DiI, a red fluorescence dye (exci-
tation 549  nm and emission 565  nm), and resuspended 
in serum-free DMEM (Life Technologies, Carlsbad, 
CA, USA). Fifty A549 cells were microinjected into the 
yolk sac of the larvae. The larvae were then incubated 
in distilled H2O with the CPT/TFPA combination or 
CPT alone for 24 h and 48 h postinjection (hpi), respec-
tively. The masses of xenografted tumor cells were pho-
tographed using an inverted fluorescence microscope 
(Nikon Eclipse TE2000-U, Tokyo, Japan).

Statistical analysis
All data are presented as the means ± standard deviations 
(SDs) of three independent experiments. The significance 
of the difference between the cells treated with the com-
bination of CPT with TFPA and the cells treated with 
CPT alone was analyzed by one-way analysis of variance 
(ANOVA). p < 0.05 was considered to indicate statistical 
significance.

Results
Effect of TFPA on CPT-induced inhibition of NSCLC cell 
proliferation
The trypan blue exclusion assay revealed compelling 
evidence showing synergy when CPT and TFPA were 
combined, leading to marked inhibition of cellular prolif-
eration in both NSCLC cell lines (Fig. 1A and B). Notably, 
this synergy extended to the suppression of clonogenic-
ity, as illustrated in Fig. 1C and D, underlining the potent 
antiproliferative potential of this combination therapy. 
These results emphasize the promising therapeutic impli-
cations of concurrent CPT and TFPA administration in 
the context of NSCLC treatment, which warrants further 
investigation.

Effect of TFPA on CPT-induced NSCLC cell death
To examine whether the combination of CPT and TFPA 
synergistically inhibits NSCLC cell proliferation by 
inducing apoptosis, apoptotic cells were detected using 
an annexin V/PI dual staining assay. Annexin V-positive/
PI-negative and annexin V-positive/PI-positive cells were 
considered early- and late-apoptosis populations, respec-
tively. As shown in Fig.  2A and B, treatment with CPT 
alone moderately induced apoptosis in A549 cells at both 
24 h and 48 h, and TFPA alone did not induce significant 
apoptosis in A549 cells. In comparison with treatment 
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with CPT or TFPA alone, the combination of CPT and 
TFPA synergistically induced the apoptosis of A549 cells. 
Similarly, Western blot results showed increased cleavage 
of caspase-9 and caspase-3, suggesting that cotreatment 
with TFPA could further increase the levels of apoptosis-
related proteins in both A549 (Fig. 2C and D) and H1299 
cells (Additional file 1).

Autophagic induction and maturation of A549 cells after 
CPT/TFPA cotreatment
Autophagic cell death induced by anticancer compounds 
is usually accompanied by the formation of large-scale 
autophagic vacuolization in the cytoplasm of cells [49, 
50]. As shown in Fig.  3A, we found that CPT/TFPA 
cotreatment induced the formation of vesicles in A549 
cells after incubation for 24 h, suggesting that autophagy 
was induced in A549 cells by cotreatment with CPT and 
TFPA. In this study, we used AO, a nucleic acid-selec-
tive fluorescent cationic dye, to detect AVOs (Fig.  3B). 

Furthermore, the formation of LC3B puncta is the hall-
mark of the maturation of autophagosomes [51], and the 
results showed that CPT/TFPA cotreatment markedly 
increased the formation of LC3B puncta in A549 cells 
(Fig. 3C and D).

CPT/TFPA cotreatment impairs both autolysosome 
formation and lysosomal function
A previous study showed that impairing autophagy con-
tributes to the death of cancer cells [52]. Therefore, we 
further investigated whether CPT/TFPA cotreatment 
induced A549 cell death by modulating autophagy. As 
shown in Fig.  4A and B, Western blotting showed that 
CPT/TFPA cotreatment induced the accumulation of 
LC3B-II, a marker of autophagosomes, and LAMP2, a 
marker of lysosomes, in A549 cells to a greater extent 
than that observed with CPT treatment alone. Addition-
ally, the expression of SQSTM1/p62, an important sub-
strate of autophagosome enzymes [53], and cathepsin 

Fig. 1  Effects of the combination of CPT and TFPA on the cell proliferation and survival of NSCLC cell lines. H1299 cells were treated with the indicated 
doses of CPT and TFPA alone or in combination for 48 h. A trypan blue exclusion assay was performed to measure the proliferation rate of H1299 cells. A 
and B NSCLC cells A549 and H1299 were treated with 0.5 µM CPT and 10 µM TFPA alone or in combination for 24 h and 48 h. The cell survival rate was 
determined (**p < 0.001). C Results of a colony formation assay for evaluating the effect of the combination of 0.5 µM CPT and 10 µM TFPA on the long-
term proliferation of NSCLC cells. D Quantification of the results in C (**p < 0.001)
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D, a lysosomal enzyme [54], was decreased in A549 cells 
after cotreatment with CPT and TFPA compared with 
CPT alone (Fig.  4A). Furthermore, cotreatment with 
CPT and TFPA induced localization of LC3 primarily 
in the nuclei, whereas a marked decrease in cytoplasmic 
LC3 was observed (Fig. 4C). These results suggested that 
CPT/TFPA cotreatment impaired the translocation of 
LC3 from nuclei to the cytoplasm, which may block the 
fusion of autophagosomes and lysosomes in the cyto-
plasm, and led to increased perinuclear localization of 
LC3 compared with CPT alone, whereas CPT/TFPA 
cotreatment appeared to induce accumulation of nuclear 
LC3.

TFPA enhances CPT-induced ROS production in NSCLC cells
A previous study found that the regulation of endoge-
nous ROS is highly correlated with the fusion of autopha-
gosomes and lysosomes during the autophagy process 
[55]. Therefore, we further examined whether CPT/
TFPA cotreatment synergistically increases the ROS lev-
els in A549 cells. Dihydroethidium (DHE), a superoxide 
(O2

−) indicator, was used to detect the intracellular lev-
els of ROS in cells [56]. A flow cytometry-based analysis 

showed that the level of endogenous ROS in A549 cells 
cotreated with CPT and TFPA was higher than that in 
cells treated with CPT alone for 6 h (Fig. 5A and B), sug-
gesting that TFPA synergistically enhances CPT-induced 
endogenous ROS accumulation in A549 cells. In contrast, 
NAC, an ROS scavenger, was used to scavenge ROS [57]. 
Next, we examined whether NAC reduces CPT/TFPA 
cotreatment-induced ROS production in A549 cells. As 
described in Fig. 5, ROS scavenging by NAC significantly 
reduced CPT/TFPA cotreatment-induced ROS produc-
tion in A549 cells. These results suggest that CPT/TFPA 
cotreatment increases the endogenous ROS levels in 
A549 cells.

ROS scavenger treatment attenuates CPT/TFPA 
cotreatment-induced cell death in NSCLC cells
We examined whether ROS play a role in the CPT/
TFPA combination-induced apoptosis of NSCLC cells. 
As shown in Fig.  6A and B, NAC, an ROS scavenger, 
moderately reduced CPT/TFPA cotreatment-induced 
apoptosis of A549 cells, suggesting that TFPA sensitizes 
A549 cells toward CPT-induced apoptosis by promoting 
ROS generation. Furthermore, we evaluated the effect of 

Fig. 2  Cotreatment with CPT and TFPA synergistically promotes the apoptosis of A549 cells. The cells were treated with the indicated concentrations 
of CPT and TFPA alone or in combination for 24 h and 48 h. A Apoptosis was assessed by annexin V/PI staining and flow cytometry. B Quantification of 
the results in A (**p < 0.001). C Western blot assays were performed to analyze the changes in the expression of apoptosis-related proteins, including C-
caspase-9 and C-caspase 3. C-caspase-9 indicates cleaved caspase-9; C-caspase 3 indicates cleaved caspase 3. GAPDH was used as an internal control to 
ensure equal loading. D Quantification of the results in C
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ROS on CPT/TFPA cotreatment-induced expression of 
LC3B-II, SQSTM1/p62 and LAMP2, a lysosome-related 
protein, in A549 cells by Western blotting. As shown in 
Fig.  6C and D, Western blotting showed that NAC res-
cued the protein expression of LC3B-II, SQSTM1/p62 
and LAMP2 in A549 cells, suggesting that CPT/TFPA 
cotreatment-induced ROS production blocks the fusion 
of autophagosomes with lysosomes.

CPT/TFPA cotreatment inhibits the proliferation of NSCLC 
cells in a zebrafish xenograft model
We further examined whether cotreatment with CPT 
and TFPA synergistically inhibits the proliferation of 
A549 cells in zebrafish [58]. Cells were prestained with 
DiI (red fluorescent dye) and implanted into the yolk sac 
of zebrafish larvae for 24 and 48 h, and the larvae were 
then incubated with CPT and TFPA alone or in combi-
nation. Consistent with the in vitro findings, the zebraf-
ish xenograft assay demonstrated that TFPA cotreatment 

Fig. 3  The combination of CPT and TFPA increases autophagy in NSCLC cells. A549 cells were treated with the indicated concentrations of CPT (0.5 µM) 
and TFPA (10 µM) alone or in combination for 24 h. A The combination of TFPA and CPT increased the formation of vesicles, which were observed by 
phase-contrast microscopy. B Detection of AVOs, the hallmark of autophagy, induced by the combination of CPT and TFPA using AO staining. C Formation 
of LC3B puncta in A549 cells after cotreatment with CPT and TFPA (the white arrows indicate the formation of LC3B puncta, a marker of autophagosomes). 
D Quantification of the results in C (**p < 0.001). Magnification: 100x
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Fig. 4  CPT/TFPA cotreatment induces nuclear retention of LC3B and blocks the fusion of autophagosomes with lysosomes in A549 cells. The cells were 
treated with CPT (0.5 µM) and TFPA (10 µM) alone or in combination for 24 h. A Western blot analysis showed that CPT/TFPA cotreatment increased the 
protein levels of LC3B-II and LAMP2 but decreased the protein levels of SQSTM1/p62 and cathepsin D. The protein intensity was first normalized to the 
internal control GAPDH, and then the relative fold changes in the protein levels were normalized by the untreated control group. B Quantification of the 
results in A (*p < 0.05; **p < 0.001). C Analysis of the localization of LC3B in A549 cells using a confocal microscopy-based immunofluorescence assay (the 
yellow dotted lines indicate the region of nuclei). Magnification: 1000 x. The dotted line (yellow line) indicates the nuclear regions. DAPI was used as a 
nuclear marker (Blue fluorescence); LC3B was used as a marker of autophagosomes (Green fluorescence)
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Fig. 6  Role of ROS in TFPA/CPT-induced apoptosis and autophagy in NSCLC cells. A549 cells were pretreated with 2 mM NAC for 3 h before CPT/TFPA 
cotreatment. A Annexin V/PI dual staining was performed to examine the apoptotic cell population. B Relative levels of apoptotic cells in treated groups 
with and without pretreatment with NAC (**p < 0.001). C Expression of the autophagosome-related protein LC3B and lysosome-related protein LAMP2. D 
Quantification of the Western blot results. The vehicle group was used as the normalization control (*p < 0.05; **p < 0.001)

 

Fig. 5  Cotreatment with CPT and TFPA enhances ROS production in A549 cells. The cells were treated with CPT (0.5 µM) and TFPA (10 µM) alone or in 
combination for 6 h, respectively. A The production of endogenous ROS was determined using a flow cytometer-based DHE staining assay. Pretreatment 
with NAC as an ROS scavenger. B Quantification of the results in A (**p < 0.001)
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effectively suppressed the growth of implanted A549 cells 
(Fig. 7A and B), validating that TFPA treatment enhances 
the inhibitory effect of CPT on the growth of NSCLC 
cells both in vitro and in vivo.

Discussion
Although chemotherapy is primarily used to treat 
NSCLC patients, most NSCLCs acquire resistance to 
chemotherapy [19, 59]. For instance, topoisomerase 
inhibitors, such as topotecan, are widely used in the treat-
ment of lung cancer patients and as second-line therapy 
[60]. However, the 5-year recurrence rate of NSCLC 
patients after topotecan treatment could reach 50% [19]. 
Fortunately, several studies have found that aniline-con-
taining compounds may contribute to enhancing radio-
therapy or chemotherapy-based treatment strategies for 
lung cancer. For example, 4-(2-cyclohexylethoxy) aniline 
(IM3829) synergistically increases the radiation-induced 
apoptosis of H1299 cells [38]. Additionally, acetamino-
phen, an aniline-containing compound, synergistically 
increases both cisplatin- and paclitaxel-induced antipro-
liferation of human ovarian cancer SKOV3 cells [61].

In this study, we found that both the trypan blue exclu-
sion assay and colony formation assay showed that the 
CPT/TFPA combination inhibited the proliferation of 
NSCLC cells (Fig. 1). Therefore, these results indicate the 
effects of TFPA on CPT-induced inhibition of NSCLC 
cell proliferation. Increased viability was observed with 
TFPA treatment alone compared to the control. Fur-
ther statistical analysis showed that the difference was 
only significant in H1299 cells, as shown in Fig.  1B 
(p < 0.001), but not significantly different in A549 cells 
in Fig. 1A (p = 0.91). Based on our results, we suggested 
that this hormesis-like response may be due to cellular 

overcompensation to the low-dose toxin exposure. As 
reported in the literature, hormesis manifests as a bipha-
sic dose response with increased stimulatory or beneficial 
effects at low doses and inhibitory or toxic effects at high 
doses [62]. The exact molecular mechanisms remain to 
be fully elucidated but may involve pathway overactiva-
tion. While this issue should be further investigated, the 
central finding is that TFPA significantly potentiates the 
antiproliferative and cytotoxic activity of CPT in NSCLC 
cells, consistent with the overall conclusions regarding 
the therapeutic potential of this combination.

Two major signaling cascades of apoptosis are the 
intrinsic/mitochondrion-mediated apoptosis pathway 
and the extrinsic/death receptor-mediated apoptosis 
pathway [63]. Our results showed that TFPA increased 
the apoptosis rate of A549 cells by approximately 20% 
compared with that found with CPT treatment alone 
(Fig.  2A and B). Compared with CPT alone, the CPT/
TFPA combination increased the proteolytic activation 
of the initiator caspase of the mitochondria-mediated 
apoptosis pathway, caspase-9, and the effector caspase-3, 
which are hallmarks of apoptosis, in A549 cells (Fig. 2C 
and D).

In addition to apoptosis, there are several known non-
apoptotic mechanisms that contribute to cell death, such 
as necrosis and autophagy [64, 65]. Autophagy is a con-
served lysosome-mediated mechanism by which cells 
can degrade various macromolecules and organelles and 
therefore plays a prosurvival role in response to stresses 
such as starvation in healthy cells [66]. Autophagy 
involves the sequestration of the cytoplasm and dam-
aged organelles within double-membrane autophago-
somes, where the organelles are eventually degraded 
by lysosomal hydrolases [67]. Additionally, the process 

Fig. 7  Results of the in vivo zebrafish xenograft model. A549 cells were labeled with the red fluorescence dye DiI and injected into the yolk sac of 
zebrafish larvae. Subsequently, the larvae were incubated with the indicated treatments for zebrafish for 24 h and 48 h, respectively. A The intensity of 
red fluorescence indicates the mass size of the xenograft tumor. N = 15. B Quantitative results of A (ap > 0.05, bp < 0.05, cp < 0.001). Magnification: 100x
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of autophagy includes five stages: initiation, elonga-
tion, autophagosome maturation, fusion of lysosomes 
and autophagosomes, and final degradation of damaged 
organelles or macromolecules [27].

Anticancer drug-induced autophagy is thought to 
contribute to cell survival and therefore promotes the 
chemoresistance of cancer cells [68–70]. Zhang’s work 
showed that autophagy delays the CPT-induced cell 
death of human colon cancer HCT116 cells [22]. Fur-
thermore, recent studies have found that the disruption 
of autophagy significantly increases the chemotherapeu-
tic agent-induced cell death of cancer cells [40, 71, 72]. 
For instance, chloroquine (CQ), an autophagy inhibitor, 
promotes the topotecan-induced death of A549 cells by 
impairing the formation of autolysosomes [41]. Similarly, 
CQ has been shown to sensitize A549 cells to treatment 
with BEZ235, a PI3K/mTOR inhibitor [73]. Accordingly, 
the abovementioned studies suggest that impairment of 
the autophagy process could be a strategy for lung can-
cer treatment [52]. Moreover, anticancer drug-induced 
cell death may be accompanied by the accumulation of 
cytoplasmic vacuoles rather than by the formation of 
apoptotic bodies [50]. Trabbic et al. found that 2-indolyl 
substituted pyridinylpropenones, indole-based chal-
cones, induce death of glioblastoma cells U251 by regu-
lating massive cytoplasmic vacuolization, a hallmark of 
autophagic cell death [74]. The modulation of mitochon-
drial apoptosis and autophagic flux by drug combinations 
is considered to be a promising strategy for sensitizing 
cancer cells. For example, Hajiahmadi reported that the 
combination of simvastatin (Simva), cholesterol-lowering 
medications, and acetylshikonin increased temozolo-
mide-induced cell death in the glioblastoma multiforme 
(GBM) cell lines U87 and U251 by modulating autopha-
gic flux [75]. Our findings are consistent with recent stud-
ies exploring combination therapies for GBM, such as 
the work by Hajiahmadi S et al. demonstrating increased 
apoptosis and potential involvement of mitochondrial 
dysfunction [75]. While our study focused on impairing 
autophagy with aniline TFPA to increase CPT-induced 
cell death, further confirmation of the role of autophagy 
is required. Therefore, we examined whether autophagic 
cell death contributes to CPT/TFPA-induced death. We 
found that the CPT/TFPA combination induced accu-
mulation of cytoplasmic vacuoles (Fig. 3A) and enhanced 
the formation of AVOs (Fig. 3B). Furthermore, the CPT/
TFPA combination increased LC3 puncta, suggesting 
autophagy induction (Fig. 3C and D).

We further found that TFPA increased the CPT-
induced accumulation of both LC3B-II, a marker of 
autophagosomes, and LAMP2, a marker of lysosomes 
(Fig. 4A and B). In contrast, the expression of cathepsin 
D, a lysosome-associated enzyme [76], and SQSTM1/
p62, a vital substrate for lysosomal degradation [77], 

was markedly decreased by CPT/TFPA cotreatment in 
A549 cells (Fig.  4A). Recently, Li’s work suggested that 
the inhibition of cathepsin D enhances dysfunction of 
the autophagy‒lysosome pathway [78], suggesting that 
the CPT/TFPA combination may impair autophagy in 
NSCLC cells.

Interestingly, our results showed that the nuclear 
retention of LC3B was increased by the CPT/TFPA 
combination in A549 cells (Fig.  3C). Under healthy or 
nutrient-abundant conditions, LC3 is acetylated and dis-
tributed in both the nucleus and cytoplasm. However, 
under nutrient depletion or other stress conditions, LC3 
is deacetylated and then translocated from the nucleus to 
the cytosol. LC3 redistribution promotes the maturation 
of autophagosomes [79]. Recent studies have suggested 
that arresting or blocking the process of autophagy could 
be a promising strategy for enhancing the cytotoxicity of 
anticancer drugs. Chen’s work found that graphene oxide, 
a nanomaterial, in combination with cisplatin increases 
cytotoxicity in CT26 colorectal cancer by blocking the 
redistribution of LC3 from the nucleus to the cytoplasm 
[80], suggesting that the nuclear retention of LC3 blocks 
the maturation of autophagosomes, a critical stage of 
autophagy.

During the process of autophagy, the fusion of lyso-
somes and autophagosomes is the key step in autolyso-
some formation, and lysosomal degradation ensures 
the progression of autophagy [81]. Insufficient activity 
or downregulated expression of the lysosomal enzyme 
cathepsin D could cause dysfunction of lysosomal degra-
dation [72, 82], which may cause autolysosome dysfunc-
tion. Accordingly, our present results showed that TFPA 
might not only impair lysosomal degradation by down-
regulating the lysosomal enzyme cathepsin D but also 
prevent autophagosome maturation by changing the dis-
tribution of LC3.

The involvement of ROS in activating autophagy was 
reported previously [83, 84]. Chen et al.. proposed that 
superoxide (O2

−), one of the most common free radi-
cals, plays a role in regulating autophagy [85]. In con-
trast, increased levels of ROS can sensitize cancer cells 
to chemotherapy [86]. For example, Ma K et al.. found 
that cinobufagin, which was isolated from Chan Su, 
increased the autophagy-mediated cell death of osteo-
sarcoma U2OS through increased ROS production [87]. 
Similarly, psoralidin, isolated from Psoralea corylifolia 
L., induced cell death in NSCLC by blocking autopha-
gosome-lysosome fusion [55]. Our results showed that 
TFPA synergistically enhanced CPT-induced ROS in 
A549 cells, and pretreatment with NAC, an ROS scaven-
ger, partially reduced ROS accumulation and apoptosis 
after CPT/TFPA cotreatment (Figs. 5 and 6), suggesting 
that ROS play a promoting role in CPT/TFPA-induced 
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autophagosome accumulation and lysosomal expansion 
in A549 cells.

Zebrafish (Danio ratio) are small, and their embryos 
are transparent and undergo rapid development; there-
fore, they are an ideal model organism for disease and 
drug discovery [88]. We used a zebrafish xenograft assay 
to validate the inhibitory effects of CPT/TFPA cotreat-
ment on NSCLC cells in vivo. Consistent with the in vivo 
results, the CPT/TFPA cotreatment synergistically inhib-
ited the cell growth of A549 cells compared with that 
observed with CPT treatment alone (Fig. 7).

Based on our observations, the accumulation of 
autophagosomes (increased LC3B-II) and lysosomal 
expansion (increased LAMP2), along with reduced lev-
els of cathepsin D and p62, indicates impaired lysosomal 
degradation [89]. Remarkably, we also noted increased 
nuclear retention of LC3B, suggesting a potential inter-
ference with autophagosome maturation. Therefore, our 
findings suggest that CPT/TFPA treatment impedes 
autophagy in NSCLC cells, particularly by obstruct-
ing autophagosome-lysosome fusion and subsequent 
autolysosomal degradation. The interplay between ROS 
and autophagy is intricate and extensively studied. ROS 
can serve as signaling molecules that induce autophagy, 
thereby mitigating oxidative stress through damaged 
organelle and protein degradation. However, excessive 
ROS could impair autophagy and lead to cell death [90].

Given that CPT and TFPA are known to elevate ROS 
production, the observed autophagic impairment may 
partly be due to increased ROS levels disrupting autopha-
gic processes. Our study suggests a potential role for ROS 
in CPT/TFPA-induced autophagy impairment, which 
could be further explored using ROS scavengers such as 

NAC, which reduces intracellular ROS levels. Assessing 
its impact on autophagy in the context of CPT/TFPA 
treatment could determine whether ROS modulation can 
alleviate autophagic stress and increase cell viability.

Our study showed that the CPT/TFPA combination 
induced cell death in NSCLC by impairing autophagy, 
employing advanced autophagic flux assays, such as 
those using lysosomal inhibitors, or the tandem fluores-
cent reporter system (GFP-LC3-RFP/mCherry-LC3ΔG), 
as proposed by Kaizuka et al. [91] and Tanaka et al. [92]; 
therefore, the above assessments, which provide direct 
evidence of how the CPT/TFPA combination disturbs 
autophagy at different stages in NSCLC cells, will be 
included in our future study.

Conclusions
Our present results suggest that TFPA enhances CPT-
induced proliferation inhibition and cell death in NSCLC 
cells. CPT/TFPA cotreatment blocked the fusion of 
autophagosomes and lysosomes, possibly through the 
retention of nuclear LC3B and the modulation of lyso-
some activity, causing autophagy impairment. Further-
more, cotreatment with CPT and TFPA increased the 
ROS levels and reduced the apoptotic threshold, sensitiz-
ing NSCLC toward cell death (Fig. 8). The aniline deriva-
tive TFPA could be a promising sensitizer to CPT-based 
treatment for lung cancer in the future.
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CPT-induced ROS levels B, resulting in significant nuclear retention of LC3 and a reduction in cytoplasmic LC3 levels. This process impairs autophagy, 
hindering the fusion of autophagosomes and lysosomes in the cytoplasm, ultimately inducing autophagic stress and leading to cell death of NSCLC cells
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