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Abstract
Background  Pancreatic adenocarcinoma (PDAC) is the most fatal malignant tumor that focuses on men and the 
elderly (40–85 years) and is aggressive. Its surgical resection rate is only 10-44%, and the rate of local recurrence in 
the retroperitoneum 1 year after surgery is as high as about 60%. The main reason for local recurrence in the majority 
of patients is that PDAC is perineural invasion (PNI) and the cancer cells infiltrate and grow along the peripancreatic 
nerve bundles. The identification of biomarkers associated with the diagnosis of PDAC may help to improve the 
current difficulty in early diagnosis of pancreatic cancer and guide clinical treatment. We constructed a co-culture 
model system of Schwann and PDCA cells to determined that Stearoyl Coenzyme A Desaturase (SCD) is a key gene 
driving the progress of PDAC.

Methods  Single-cell data files for PDAC were analyzed to compare cellular composition and subpopulation-
specific gene expression between control (n = 4) and pancreatic cancer (n = 6). Among 36,277 cells, we obtained a 
total of 16 subpopulations, including a Neurons subpopulation, by UMAP analysis. Further screening by Mendelian 
randomization analysis yielded three pairs of key genes corresponding to eQTL-positive outcome causally, the 
corresponding genes were, in order: the three genes COL18A1, RASSF4, and SCD. Among them, SCD was significantly 
positively correlated with with the malignant progression of pancreatic cancer, and enriched in signaling pathways 
such as MTORC1_SIGNALING and P53-PATHWAY. In this study, We further applied CRISPR-Cas9 technology to knock 
out SCD expression in Schwann cells under co culture system to detect the growth status of PDAC cells.

Results  Three genes (COL18A1, RASSF4, SCD) showed significant correlation with PDAC. The identified SCD genes 
were positively correlated with the development of PDAC. We further demonstrated through experiments that SCD 
is overexpressed in PDAC tissues, and knocking down SCD in neuronal cells reduces the PDAC cells growth rate and 
migration ability.

Conclusion  In this article, we demonstrated that the upregulation of SCD expression level in neuronal cells is related 
to the PDAC, and SCD may be a promising candidate for PDAC therapy.
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Introduction
PDAC is a malignant tumor originating from the epithe-
lium and follicular cells of the pancreatic ducts [1]. Sev-
eral studies have identified elderly age, tobacco use and 
a long-history chronic pancreatitis as clear risk factors, 
both diabetes and obesity also appear to increase risk of 
cancer [1–3]. Increased risk in relatives of patients with 
PDAC has been documented, with an estimated 10% 
of PDAC cases having a genetic susceptibility based on 
familial clustering [4, 5]. Accordingly, germline muta-
tions were associated with familial PDAC, including 
mutations targeting the oncogenes INK4A, BRCA2, and 
LKB1, the cationic trypsinogen gene PRSS1, and the 
DNA mismatch repair gene MLH1 [6, 7]. BRCA1 muta-
tions appear to increase susceptibility to PDAC, although 
the associated risk is lower than BRCA2 [8]. Cancer Data 
2022 statistics show that PDAC mortality ranks as the 
fourth leading cause of tumor-related death [9]. Its mor-
tality to incidence M/I ratio (MIR) is about 0.94, which 
is the first among all common tumor types, reflecting its 
extremely high degree of malignancy and poor prognosis, 
and posing a more serious challenge to basic translational 
and clinical research in PDAC [10]. Therefore, the iden-
tification of PDAC predisposing factors and biomarkers 
affecting the progression of PDAC is necessary, in order 
to select the best treatments for patients with PDAC, 
thus providing the best hope for a cure or prolonged life 
expectancy.

Prominent perineural alterations such as an increase 
in the size of neural hypertrophy and some intrapan-
creatic nerves, neural density, and neural remodel-
ing were observed during PDAC progression [11, 12]. 
Growing evidence suggests active interactions between 
tumor and nerve cells. ADRB2-signaling pathway pro-
motes the secretion of brain-derived neurotrophic fac-
tor (BDNF) and nerve growth factor (NGF) in PDAC, 
thereby increasing nerve density [13]. Schwann cell is the 
main cell type in peripheral nerves [14]. Remarkably, this 
type of cells are frequently detectable around pancreatic 
intraepithelial neoplasia (PanIN) lesions both in humans 
and mice [15]. In this study, we used Schwann cells and 
PDAC cells (PANC-1 and MIA PaCa-2) to establish a co-
culture model to investigate the effect of SCD expression 
in neuronal cells on PDAC progression.

As early as 1970, Paulien Hogeweg of Utrecht Univer-
sity in the Netherlands coined the term “bioinformatics”. 
She defined it as “the study of information processes in 
biological systems” [16]. With the development of large-
scale high-throughput multi-omics technologies, such as 
genomics, transcriptomics, proteomics, and metabolo-
mics, the generation of biomedical data has been greatly 
accumulated, further advancing the development of bio-
informatics. Mendelian randomization (False Discov-
ery Rate, FDR) is a statistical method commonly used in 

bioinformatics, a design which improving causal infer-
ences from observational data by using genetic varia-
tion as a natural experiment [17, 18]. In the last decade, 
genome-wide association analyzes (GWAS, Genome-
wide association studies) of almost all common malig-
nancies have been completed and more than 450 genetic 
variants associated with increased risk have been iden-
tified, and these findings have enabled the FDR design. 
Recently, Mendelian randomization has been increas-
ingly used in the identification of susceptibility genes. 
Bioinformatics can help to comprehensively study 
tumorigenesis in depth, screen possible core targets, 
and provide references for clinical diagnosis and disease 
treatment.

In this study, we analyzed a single-cell database of 
PDAC and further sorted the neuronal cell taxa therein, 
applied Mendelian randomization for genetic evolution, 
and screened for marker genes that can predict PDAC 
development. Finally, we utilized experiments to validate 
the association of SCD genes with the proliferative and 
invasive ability of pancreatic cells.

Results
Quality control
Single-cell data files based on GSE212966, we first read 
the expression profiles using the Seurat package, filtering 
cells based on total UMIs (Unique Molecular Identifiers) 
per cell, expressed genes, mitochondria per cell and ribo-
somes per cell. Among them, outliers are defined as three 
median absolute deviations (MAD) from the median, 
and cells with less than 500 captured genes will be fil-
tered, filtering formula: (nFeature_RNA > 500 & percent.
mt < = 3MAD & nFeature_RNA < = 3MAD & nCount_
RNA < = 3MAD & percent.ribo < = 3MAD), where nFea-
ture_RNA represents the number of genes, nCount_RNA 
represents the total number of UMIs in the cell, percent.
mt represents the mitochondrial reading percentage, and 
percent.ribo represents the ribosome reading percent-
age. The DoubletFinder package was then used to filter 
the double cells, and a total of 36,277 cells were retained 
(sup Fig.  1AB). The 10 genes with the highest standard 
errors were displayed (sup Fig. 1C). The data were then 
processed by standardisation, homogenisation, PCA 
(Principal Component Analysis) and harmony analy-
sis in sequence (sup Fig. 1D-F), and finally a total of 16 
subgroups were obtained by UMAP (uniform manifold 
approximation and projection) analysis (Fig. 1A).

Cell annotation and ligand-receptor interaction analysis
This study further annotated each subtype. 11 cell cate-
gories were annotated: CD8+ T cells, Fibroblasts, B cells, 
Epithelial cells, Macrophages, CD4+ T cells, Endothelial 
cells, Neutrophils, Mast cells, NK cells, and Neurons 
(Fig.  1B). We also show the classic markers of these 11 
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Fig. 1 (See legend on next page.)
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cells in a bubble chart (Fig. 1C) and the histogram of cell 
proportions corresponding to the groups (Fig.  1D). We 
used the cellchat software package to analyse the ligand-
receptor relationship of features in single cell expression 
profiles. Ultimately, we observed that there are complex 
associations between these cell subtypes (Fig. 1EF).

Functional analysis of GO and KEGG
Pathway analysis was also performed on the marker 
genes of Neurons cells. GO enrichment analysis revealed 
that the genes were primarily enriched in pathways such 
as glial cell differentiation and gliogenesis (Fig.  2A). 
KEGG enrichment analysis revealed that the genes were 
mainly clustered in adhesion molecules, cytoskeleton in 
muscle cells and other pathways (Fig. 2B).

Mendelian randomization analysis
In order to find out the key genes that affect PDAC, we 
used the marker genes obtained in the previous step and 
obtained the outcome ID ebi-a-GCST90018893 through 
the summary statistics of 476,245 samples related to 
PDAC (Controls: 475,049; Cases: 1,196). A total of 191 
pairs of causal relationships between genes and outcomes 
were extracted using extract_instruments and extract_
outcome_data in sequence. In addition, we demonstrated 
the causal relationship between three pairs of genes cor-
responding to positive eQTL results (Fig. 3A-C) by Men-
delian randomisation analysis (IVW pval < 0.05). The 
corresponding genes identified are COL18A1, RASSF4 
and SCD. Among them, COL18A1 (0.879; 0.790 − 0.977; 
p = 0.017); RASSF4 (0.819; 0.688 − 0.974; p = 0.024) 
may be associated with a low risk of PDAC. And SCD 
(1.319; 1.017 − 1.712; p = 0.037) may be associated with 
an increased risk of PDAC. To determine the reliability 
of the causal relationships of the three genes using the 
leave-one-out method, we also performed a sensitiv-
ity analysis. The results showed that the three pairs of 
causal relationships we selected were robust, as excluding 
any SNP had no apparent effect on the overall error bar 
(Fig. 4A-C).

GSEA pathway enrichment analysis
We then examined the specific signalling pathways 
which were enriched in the three key genes to explore 
the potential molecular mechanisms by which key genes 
affect PDAC progression. GSEA results revealed the 

pathways enriched by COL18A1 include IL-17 signaling 
pathway and NF-κB signaling pathway and TNF signaling 
pathway (Fig. 5A); pathways enriched by RASSF4 include 
B cell receptor signaling pathway, Chemokine signaling 
pathway and NF-κB signaling pathway (Fig. 5B); enriched 
by SCD include Glucagon signaling pathway, mRNA sur-
veillance pathway and p53 signaling pathway (Fig.  5C). 
The enriched genes of related pathways are shown in sup 
Fig. 2. We were surprised to find that SCD correlates with 
the p53 pathway, which regulates cell metabolism, fer-
roptosis, tumor microenvironment, autophagy and so on, 
all of which contribute to tumor suppression [19]. This 
prompted us to focus on SCD.

SCD is upregulated in human pancreatic tumors
We performed immunohistochemical (IHC) analysis 
of SCD protein on paraformaldehyde-fixed tissue sec-
tions of pancreatic tumor samples from seven patients in 
order to further investigate the correlation between SCD 
and PDAC progression (Fig. 6AB). The presence of SCD 
staining was observed to be markedly prevalent within 
the cytoplasm of pancreatic tumor tissue, but much less 
in the adjacent tissue (Fig.  6C, representative results 
shown). A real-time fluorescence quantitative PCR (qRT-
PCR) level of the patient’s tissue samples showed that the 
transcription level of SCD in tumor tissue was up-regu-
lated (Fig. 6D) but there was no significant difference in 
protein expression (Fig. 6E), which may be because SCD 
was only expressed in the nerve cells of PDAC.

pancreatic cancer cells (PANC-1 and MIA PaCa-2). We 
found that the expression level of SCD had no statisti-
cal significance on the proliferation of pancreatic cancer 
cells, but had a certain impact on the invasion and migra-
tion of pancreatic cancer cells (sup 3).

The depletion of SCD in Schwann cells has been 
demonstrated to suppress the malignant phenotypes of 
pancreatic tumor cells in vitro
To investigate the in vitro function of SCD in PDAC, we 
stably introduced Cas9 vectors containing three distinct 
sgRNAs that specifically target SCD or non-targeting 
control sgRNAs into the human Schwann cell lines (des-
ignated sgSCD-1, sgSCD-2, sgSCD-3, and sgScramble, 
respectively). sgSCD-1 and sgSCD-2 were selected for 
further experiments due to the low knockdown effi-
ciency of sgSCD-3. The knockdown efficiency was then 

(See figure on previous page.)
Fig. 1  Cell annotation (A) We used the UMAP algorithm to classify the cells into 16 clusters, based on the most important components that were avail-
able in the PCA. (B) Cell Annotated 16 clusters. The 16 clusters are annotated in terms of 11 different cell types, namely CD8+ T cells, Fibroblasts, B cells, 
Epithelial cells, Macrophages, CD4+ T cells, Endothelial cells, Neutrophils, Mast cells, NK cells, and Neurons. (C) Bubble diagram of droplet of 11 cells and 
their cell markers. (D) The difference in the proportions of these cells in both groups. (E) Network of cell interactions between 10 types of cells, where 
the width of the edges represents the probability and strength of communication between cells. Left: The size of the various coloured circles around the 
periphery indicates the number of cells; the larger the circle, the greater the number of cells. Cells that emit arrows express ligands, and cells to which 
the arrows point express receptors. The more ligand-receptor pairs, the thicker the line. Right: probability/intensity values of interactions (intensity is the 
probability values added together). (F) Cell-to-cell receptor ligand bubble diagram
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confirmed by IB (Fig. 7A) and qRT-PCR assay (Fig. 7B). 
Subsequently, a co-culture model of Schwann cells with 
two distinct PDAC cell lines was constructed (Fig.  7C), 
and a series of cell-based assays were conducted, includ-
ing CCK-8 and wound healing migration assays, to elu-
cidate the biological functions of SCD (Fig.  7D). The 
knockdown of SCD was observed to markedly reduce cell 
proliferation in sgSCD-1 and sgSCD-2 cells in compari-
son to their corresponding control cells. Furthermore, 
the wound healing migration assays demonstrated that 
the sgSCD-1 and sgSCD-2 cells exhibited a markedly 
diminished capacity to invade in comparison to the con-
trol cells (Fig. 7EF).

Discussion
Most patients with PDAC are diagnosed with locally 
advanced or metastatic tumors in the later stages of the 
disease. Despite ongoing efforts to improve PDAC treat-
ment, patient survival remains dismal. The overall global 
5-year survival rate is less than 10% [10, 20]. These facts 
emphasize the urgent need for a better understanding 
of pancreatic tumorigenesis. In this study, the analysis 
of neuronal cells in PDAC monocytic cells screened by 
Mendelian randomization yielded three pairs of genes 
associated with the risk of PDAC development, of which 
COL18A1 and RASSF4 may be associated with a low risk 

of PDAC. SCD, on the other hand, may be associated 
with high PDAC risk.

Human SCD, also called ∆9-fatty acyl-CoA desaturase, 
is an enzyme associated with the endoplasmic reticulum 
that catalyses the introduction of a double bond at the 
cis-∆9 location of saturated fatty acyl-CoAs [21]. Primary 
substrates of SCD are palmitoyl and stearoyl CoA, which 
give rise to palmitoleoyl and oleoyl CoA, respectively 
[22]. Further studies showed that knockdown of SCD in 
human lung SV40-WI38 fibroblasts decreased the syn-
thesis of MUFA and phospholipids, reduced the rate of 
cell proliferation and induced cell apoptosis [23]. Simi-
larly, inhibition of SCD activity led to cancer cell death by 
reducing MUFA [24, 25].

Here, we report a functional analysis of the SCD gene 
and show that knockdown of SCD gene expression in 
neuronal Schwann cells significantly reduces PDAC cell 
proliferation and migration. SCD expression has been 
reported to be correlated with bad prognosis in sev-
eral types of cancer [26]. Pharmacological inhibition of 
SCD1 as a monotherapy and in combination with che-
motherapeutic agents showed promising anti-tumor 
potential in preclinical models [27–29]. We hypothesized 
that elevated SCD expression in neuronal cells may lead 
to elevated levels of phospholipid synthesis, and neu-
ral infiltration occurs, a process that promotes PDAC 

Fig. 2  Enrichment analysis. (A-B) GO-KEGG enrichment analysis based on ClusterProfiler
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progression, but evidence that SCD promotes neural 
infiltration in PDAC is lacking in this study.

Perineural invasion (PNI) is the process of neoplas-
tic invasion of peripheral nerves and is considered the 
fifth mode of cancer metastasis. PNI has been reported 
in head and neck tumors, pancreatic, prostate, biliary, 
gastric and colorectal cancers. It is associated with poor 
prognosis and high local recurrence rates [30]. PNI of 
PDAC has become a hot research topic in academia and 

clinics, and its detailed mechanism has not been eluci-
dated. In patients with PDAC, the proportion of nerve 
invasion can be as high as 70%~100% [31], PNI is a com-
mon post-surgical recurrence of PDAC and is an inde-
pendent prognostic factor for overall survival in PDAC 
[32]. A study using a mouse model of pancreatic ductal 
adenocarcinoma found that cancer cells can produce sig-
nificant structural changes to the neural microenviron-
ment in which they invade, thus favoring their roaming 

Fig. 3  Mendelian randomization analysis. (A-C) Scatterplot of MR analysis of key genes, where different colors indicate different statistical methods and 
the slopes of the lines indicate the causal effect of each method
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Fig. 4  Leave-out test. (A-C) Forest plot of Leave-out test for SNPs corresponding to key genes
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infiltration [33]. Before infiltrating the peripheral nerves, 
PDAC cells express a large number of neurotrophic fac-
tors, such as nerve sphingomyelin (Artemin), nerve 
growth factor (NGF), etc., which can produce a strong 
affinity and sensitivity to the adjacent nerve fiber endings 
[34]. These neurotrophic factors act as a “glue”, causing a 
phenomenon similar to “mutual attraction” between the 
two [35]. Prominent perineural alterations were observed 
during PDAC progression, such as an increase in the size 
of intrapancreatic nerves (neural hypertrophy), neural 
density, and neural remodeling [11]. One of the key com-
ponents of neuropathy is the Schwann cells, the predomi-
nant cell type in peripheral nerves [14]. Therefore, in this 
study, we used a co-culture model of Schwann cells and 
PDAC cells to mimic the PNI status of PDAC.

During the last decade, many reports have identified 
the ways in which SCD promotes cancer progression by 
affecting lipometabolism, cell growth, migration, inva-
sion and metabolism [36], but despite strong preclini-
cal evidence supporting SCD as a therapeutic approach 
in cancer, the development of highly potent and specific 
SCD inhibitors has not been a major therapeutic focus, 
with existing SCD inhibitors having clinical applications 
limited to the treatment of type 2 diabetes [37]. Here 
we identify SCD as an important gene present in PDAC 
neuronal cells that promotes PDAC progression. Fur-
ther studies designed and tested to knock down SCD 
with inhibitory effects on PDAC proliferation represent a 
promising strategy to ameliorate this dilemma of limited 
therapeutic options.

Fig. 5  GSEA analysis of key genes. (A) GSEA analysis results of pathways enriched by COL18A1 (IL-17, NF-κB, TNF signaling pathways). (B) GSEA analysis 
results of pathways enriched by RASSF4 (B cell receptor signaling, Chemokine signaling, NF-κB signaling pathways). (C) GSEA analysis results of pathways 
enriched by SCD (Glucagon signaling, mRNA surveillance, p53 signaling pathways)
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This study based on the PDAC single cell database 
combined with Mendelian randomisation analysis, iden-
tified key factors in PDAC neuromarkers associated with 
PDAC progression, which will contribute to the devel-
opment of new strategies for neurological treatment of 
PDAC and the identification of concomitant biomarkers 
for neurological treatment.

Materials and methods
Data acquisition
1) The database GEO, the full name of GENE EXPRES-
SION OMNIBUS, is established and maintained by the 
National Center for Biotechnology Information, NCBI. 
The single-cell data file of GSE212966 was downloaded 
from the NCBI GEO open database and contains 10 
samples with complete single-cell expression profiles for 

single-cell analysis. There were 4 control cases and 6 dis-
ease cases.

2) The TCGA database is currently the most compre-
hensive cancer gene information database, containing 
expression data of genes, miRNA and lncRNA expression 
data, copy number alterations, DNA methylation, SNP 
and other information. The original processed expression 
data of PDAC were downloaded, including normal group 
(n = 4) and tumour group (n = 179).

3) Exposed data: The eQTLGen project aims to inves-
tigate the genetic structure of gene expression in blood 
and to better understand the genetic basis of complicated 
traits. The large-scale eQTLGen project is currently in its 
second phase and is focused on performing large-scale 
genome-wide meta-analyzes in blood. eQTL data are 
generated from the eQTLGen consortium database.

Fig. 6  Expression of SCD in PDAC tissues. (A) H&E staining of Rictor in representative xenograft tissue sections, (magnification × 100). Magnified regions 
are indicated by below line (magnification × 200). (B) IHC staining of SCD in representative xenograft tissue sections, (magnification × 100). Magnified 
regions are indicated by below line (magnification × 200). (C) Score according to the degree of cell staining and the proportion of positive cells (n = 7) 
(***p < 0.001). (D) mRNA expression levels of SCD in TT vs. PT. TT: tumor tissues; PT: paracancerous tissues. (E) A representative band image of an immu-
noblotting assay. GAPDH was employed as a loading control. TT: tumor tissues; PT: paracancerous tissues
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Fig. 7 (See legend on next page.)
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4) Outcome data: Participants in the outcome-based 
GWAS studies selected for this review were predomi-
nantly of European ancestry. Summary outcome data 
are all from the EBI database. The GWAS Catalogue now 
includes publications, top associations and full summary 
statistics. GWAS Catalogue data are currently mapped 
to the Genome Assembly and dbSNP Build. There were 
1,196 PDAC cases and 475,049 controls.

Quality control
We initially read expression profiles using the Seurat 
package, where cells were filtered by total number of 
UMIs per cell, number of expressed genes, percentage of 
reads for mitochondria per cell, and percentage of reads 
for ribosomes per cell. Outliers were defined as three 
MAD from the median. It is generally believed that cells 
with too high total number of UMI and expressed genes 
are double cells, and cells with too high mitochondrial 
reading percentage and ribosome reading percentage 
are poor quality cells that are on the verge of apoptosis 
or have become cell debris. After completing the above 
steps, use DoubletFinder (V2.0.4) to filter the double cells 
of each sample respectively, thus completing cell quality 
control.

Data standardization and cell annotation
Use the NormalizeData function to normalize the data, 
use CellCycleScoring to calculate the cell cycle score, 
FindVariableFeatures to find hypervariable genes, Scale-
Data to normalize the data and eliminate the impact of 
mitochondrial genes, ribosomal genes, and cell cycle on 
subsequent analysis, and RunPCA to perform expres-
sion matrix Perform linear dimensionality reduction, 
select principal components for subsequent analysis, 
use Harmony to remove batch effects, it iteratively clus-
ters similar cells in different batches in PCA space while 
maintaining the diverse batches in each cluster, and use 
RunUMAP to unify Manifold approximation and projec-
tion (UMAP) performs nonlinear dimensionality reduc-
tion, FindNeighbors finds neighbor points of cells, and 
FindClusters divides cells into different cell clusters. By 
querying CellMarker and PanglaoDB databases and lit-
erature, and supplemented by automated annotation with 
SingleR software, we find the cell types and the respective 
marker genes present in the corresponding tissue for cell 
annotation.

Analysis of the interaction between ligand and receptor 
(Cellchat)
CellChat is a platform that can quantitatively infer and 
analyze intercellular communication nets from the sin-
gle-cell data. CellChat analyzes networks and uses pat-
tern recognition methods to predict the major signal 
in/outputs of cells and how these cells and signals are 
linked to coordinate function. In our analysis, we used 
standardised single-cell expression profiles as input data 
and cell subtypes obtained from single-cell analysis as 
cell information. We then analyzed the cell-related cor-
relations and used the interaction strengths (weights) 
between cells and the number of times (counts) to quan-
tify the closeness of the interaction to observe the influ-
ence and activity of each cell type in the disease.

Functional analysis of GO and KEGG
In order to comprehensively explore the functional cor-
relations of these important genes, they were func-
tionally annotated using the R package ClusterProfiler. 
Relevant functional categories were evaluated using 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
Gene Ontology (GO). KEGG Pathways with both p and 
q values less than 0.05 were considered to be significant 
categories.

Mendelian randomization (MR) analysis
Comprehensive summary statistics from hundreds of 
GWAS studies are available in the EBI database. The EBI 
database is filtered with the outcome IDs extracted from 
the GWAS summary data (https://gwas.mrcieu.ac.uk/) 
and the relevant causal relationships in the eQTL are 
selected to meet the significance threshold (P < 1e-8), the 
associated SNPs are selected as potential IVs (instrumen-
tal variables), the LD (linkage disequilibrium) between 
the SNPs is calculated, among the SNPs with R2 < 0.001 
(clumping window size = 10,000 kb), only P2 < 5e -8 SNPs 
are retained. (The weighted median approach allows cor-
rect causal estimation up to 50% of the time when the IV 
is null), MR-Egger (the weighted model estimate is more 
capable of detecting causal effects, less biased, and with 
a lower type I error rate than the MR-Egger regression). 
A statistical method to assess the reliability of causality 
to provide an overall estimate of the effect of all cis and 
some cross-regional gene expression in whole blood on 
PDAC (if there is only one statistical method for the SNP 
in the causal relationship, only the Wald ratio is used).

(See figure on previous page.)
Fig. 7  The effect of SCD expression on the proliferation and migration ability of PDAC cells. (A) The efficacy of the SCD knockdown in Schwann cells was 
evaluated through IB assays. The knockdown was indicated as sgScramble, sgSCD-1, sgSCD-2 and sgSCD-3. GAPDH was employed as a loading control. 
(B) mRNA expression levels of SCD in sgScramble vs. sgSCD. (C) Schematic representation of Schwann Cells and PDAC Cells in co-culture mode. (D) Cell 
viability assay detection of PDAC cells (PANC-1 and MIA PaCa-2) co cultured with SCD knockdown Schwann cells. (E) Wound healing assay of PDAC cells 
co cultured with SCD knockdown Schwann cells. (F) The relative percentage of cells exhibiting SCD-induced invasion in PDAC cells (PANC-1 and MIA 
PaCa-2), ***p < 0.001

https://gwas.mrcieu.ac.uk/
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Sensitivity analysis
To assess the impact of specific genetic variants on PDAC 
risk, we used Mendelian randomisation (MR) leave-
one-out sensitivity analysis. This method systematically 
excludes each SNP and recalculates the pooled effect 
size of the remaining SNPs to identify and remove vari-
ants that disproportionately affect the overall estimate. 
Removing each SNP produces a new point estimate and 
its 95% confidence interval to help assess the unique con-
tribution and robustness of the SNP to the overall results. 
This graph summarises the estimates after removing 
individual SNPs, as well as the overall estimate when all 
SNPs are included. To determine the robustness of our 
analysis, by comparing these estimates we can observe 
the effect of removing a single SNP on the overall results.

GSEA pathway enrichment analysis
The differences in signalling pathways between the high 
and low expression groups were further analyzed using 
GSEA [38]. The background gene set is the annotated 
gene set of version 7.0, which was downloaded from the 
MsigDB database. As the annotated gene set for subtype 
pathways, we performed differential expression analy-
sis of pathways among subtypes and analyzed signifi-
cantly enriched gene sets based on the consistency score 
(adjusted p-value less than 0.05) for sorting. GSEA anal-
ysis is often used in studies where disease classification 
and biological significance are closely linked.

Clinical specimen collection
The clinical samples used in this study were collected 
from PDAC patients undergoing pancreatic surgery in 
the Liaoning Cancer Hospital. Patients were all con-
firmed pathologically and diagnosed with PDAC. Cancer 
and matched paracancer tissue were snap frozen in liquid 
nitrogen immediately after resection and then stored at 
-80 °C prior to use. This trial was authorized by the Ethics 
Committee of Liaoning Cancer Hospital and conducted 
in accordance with the Declaration of Helsinki.

Histology & IHC
The tissue processing of FFPE organotypic matrices and 
tumor tissues was performed on a Leica Peloris using 
standard tissue processing protocols. FFPE samples were 
sectioned at 4 μm (Leica RM2235 microtome). Sections 
were placed on a plain glass slide for H&E staining or a 
positively charged slide for IHC. Sections were deparaf-
finised and stained with haematoxylin, Australian bio-
stain and eosin using standard H&E procedures on a 
Leica ST5010 Autostainer XL.

Detect mRNA expression using qRT-PCR
PCR reaction was performed with 100 ng of cDNA on a 
Rotor-Gene®-Q real-time PCR cycler (Roche LightCycler 

96) using TaqMan Universal PCR Master Mix (Applied 
Biosystems). Recycling conditions were: 10 min denatur-
ation at 95℃ and 40 cycles at 95℃ for 15 s and at 60℃ 
for 1 min. The expression levels were normalised to the 
expression of GAPDH, which was used as an internal 
control. The primer sequences for use in qRT-PCR are 
shown below:

SCD 5′-GCACATCAACTTCACCACATTCTTC-3′
SCD 3′-CAGCCACTCTTGTAGTTTCCATCTC-5′
GAPDH 5′-TGTGGGCATCAATGGATTTGG-3′
GAPDH 3′-ACACCATGTATTCCGGGTCAAT-5′

Immunoblotting assay
Total proteins were extracted using RIPA whole cell lysis 
solution. Proteins were separated by 10% SDS-PAGE 
electrophoresis, measured and transferred to PVDF 
membranes (Millipore, Billerica, MA, USA) in a semi-
dry state. Membranes were blocked with TBS + Tween 
(TBST) containing 5% skim milk powder for 1 h, washed 
and incubated with primary antibody (ABclonal, A16429, 
1:1000) overnight at 4℃. The membranes were then 
washed and exposed to a horseradish peroxidase-labelled 
secondary antibody for 1 h. After washing the membrane, 
the chemiluminescent substrate was applied and the grey 
scale values were measured using a gel imaging system.

Cell culture and transfection
The human Schwann cell line, the human PDAC cell 
lines PANC-1 (CRL-1469) and MIA PaCa-2 (CRL-1420) 
were obtained from the ATCC. All cell lines were grown 
at 37℃ in a humidified incubator containing 5% CO2. 
In vitro growing cell lines were treated with small guide 
RNA (sgRNA) against SCD (ABM, China) genes and 
sgScramble (ABM, China). After Schwann cells were fully 
attached, sg-RNA was transfected at a final concentration 
of 100 nM and incubated 48 h. The sgRNA sequences are 
listed below:

Name Target Sequence
sgSCD-1 1–11 5′-CACATCGTCCTGCAGCAAGT-3′
sgSCD-2 2-118 5′-ATGTCGTCTTCCAAGTAGAG-3′
sgSCD-3 3-159 5′-TATATATGACCCCACCTACA-3′

Co-culture of Schwann and PDAC cells in vitro
For Transwell-based co-cultures, 2 × 105 PDAC cells were 
seeded in the lower section of six-well plates with 2 × 105 
Schwann cells seeded on top of the Transwell membrane 
(0.4  μm, Corning). Following 48  h of co-culture, the 
PDAC cells were washed three times with PBS, and then 
an equal number of the PDAC cells were cultured indi-
vidually in fresh medium for 24–48 h, and then the cells 
were harvested for further study.
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Wound healing migration assay
After cultivating PDAC cells individually for 24–48  h 
in a 6-well plate, the cells were scratched with a 200-
µL tip and the lines, both horizontal and vertical, were 
scratched three times per well. Ensure that the force is 
uniform and that the tip is perpendicular. Wash the cells 
with pre-warmed PBS, add 2 mL fresh medium (0–3% 
FBS) to each well and continue incubation. Photographs 
of the scratches were taken at 0 and 48  h. Image J was 
then used to measure the area of the cell scratches and 
the wound healing rate was used to reflect the ability of 
the cells to migrate.

Cell proliferation assay
After PDAC cells were cultured alone for 24 h, cells were 
transfected into 96-well plates at a density of 2 × 103 cells/
well. From day 1 to day 3, the serum-free medium con-
taining 10% CCK-8 (APExBIO, USA) reagent solution 
was added to replace the primary medium and incu-
bated for 1 h. Light absorption was measured at 450 nm 
(OD-450).

Statistical analysis of data
A reliable MR analysis is relied on three assumptions: 
[1] correlation assumption (instrumental variables are 
strongly related to exposure but not to outcomes directly) 
[2], independence assumption (instrumental variables are 
unrelated to confounding factors) [3], Exclusivity hypoth-
esis (instrumental variables can affect outcomes only 
through exposure. If the IV can affect outcomes through 
other pathways, then gene pleiotropy is established). The 
R language (version 4.3.0) was used in this analysis.

All data in this experiment were generated using 
GraphPad Prism 7 software. A two-tailed t-test or one-
way ANOVA was used to analyze the data differences. 
The results were shown as mean ± standard error. Signifi-
cant difference: *p < 0.05, **p < 0.01, ***p < 0.001.

Conclusion
PDAC peripheral nerve cells are able to influencing the 
development of PDAC, and the high expression of SCD 
in nerve cells has a promoting effect on the development 
of PDAC.
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