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Abstract 

Background  Hepatocellular carcinoma (HCC) is the main phenotype of liver cancer with a poor prognosis. Copper 
is vital in liver function, and HCC cells rely on it for growth and metastasis, leading to cuproplasia. Excessive copper 
can induce cell death, termed cuproptosis. Tumor microenvironment (TME) is pivotal in HCC, especially in immuno-
therapy, and copper is closely related to the TME pathogenesis. However, how these two mechanisms contribute 
to the TME is intriguing.

Main body  We conducted the latest progress literature on cuproplasia and cuproptosis in HCC, and summarized 
their specific roles in TME and treatment strategies. The mechanisms of cuproplasia and cuproptosis and their rela-
tionship and role in TME have been deeply summarized. Cuproplasia fosters TME formation, angiogenesis, and metas-
tasis, whereas cuproptosis may alleviate mitochondrial dysfunction and hypoxic conditions in the TME. Inhibiting 
cuproplasia and enhancing cuproptosis in HCC are essential for achieving therapeutic efficacy in HCC.

Conclusion  An in-depth analysis of cuproplasia and cuproptosis mechanisms within the TME of HCC unveils their 
opposing nature and their impact on copper regulation. Grasping the equilibrium between these two factors is cru-
cial for a deeper understanding of HCC mechanisms to shed light on novel directions in treating HCC.
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Introduction
Liver cancer poses a serious global health challenge and 
exhibits the most rapid rise in mortality in decades [1]. 
According to the latest cancer statistics in the United 
States, liver cancer ranks fourth in mortality among men 
and seventh among women [1]. Hepatocellular carci-
noma (HCC) accounts for approximately 90% of cases, 
making it the predominant subtype of liver cancer [2]. 
Hepatitis B virus, hepatitis C virus infection, nonalco-
holic steatohepatitis, aflatoxin exposure, liver cirrhosis, 
autoimmune liver disease, and metabolic syndrome are 
prominent risk factors for HCC, [3–6] especially Hepa-
titis B virus infection in China and nonalcoholic steato-
hepatitis in the West [7]. Despite advancements in drug 
development and treatment protocols, the prognosis of 
HCC patients has improved but remains relatively poor 
[8]. Furthermore, the specific molecular mechanisms 
underlying HCC are not well established, highlighting the 
pressing need for predictive biomarkers and novel tar-
geted therapies for the diagnosis and treatment of HCC.

Copper is an essential trace element for the human 
body. Copper, serving as an indispensable coenzyme for 
metabolic enzymes, participates in a series of physiologi-
cal processes such as respiration, lipolysis, cell growth, 
and proliferation [9]. Cancer, especially HCC, exhibits an 
increased demand for copper attributed to tumor growth 
and metastasis [9, 10]. Serum copper levels are notably 
higher in HCC patients compared to healthy individu-
als [11]. Elevated copper levels directly correlate with 
HCC progression, leading to cuproplasia [12]. Cupro-
plasia, characterized by copper-dependent cell growth 
and proliferation, manifests itself as copper-dependent 
tumor formation and development [9]. Nevertheless, cel-
lular copper levels demonstrate a bidirectional, U-shaped 
dose–response relationship [13]. Copper’s inherent redox 
properties render it beneficial yet potentially toxic to 
cells. Excessive extracellular and intracellular copper can 
lead to kidney disease, liver disease, and brain damage 
[14, 15]. Consequently, increased copper levels in HCC 
tissues also induce cuproptosis, potentially eliminat-
ing cancerous cells. Cuproptosis was first discovered by 
Tsvetkov and his colleagues, who identified a novel form 
of regulated cell death induced by copper, distinct from 
the known cell death modes such as necroptosis, apop-
tosis, and ferroptosis. They coined the term ‘cuproptosis’ 
[16]. This discovery has been published in science and has 
garnered considerable attention in scientific research. 
The prevalent hypoxic conditions within the tumor 
microenvironment (TME) influence copper metabolism 
in HCC tissue [17].

This review concentrates on elucidating the mecha-
nisms of cuproplasia and cuproptosis in HCC, along with 
their implications in HCC prognosis, hoping this insight 

will steer novel avenues for the diagnosis and treatment 
of HCC.

Copper metabolism and role in HCC
Copper metabolism is primarily regulated by the liver 
[18]. Humans typically contain approximately 80  mg of 
copper, predominantly distributed among vital organs 
such as the liver, brain, and eyes [19]. Daily dietary 
intake provides 1.3  mg of copper, with 0.8  mg directed 
to hepatic circulation [19]. Copper is an indispensa-
ble trace metal, acting as a cofactor for various copper-
dependent enzymes, notably respiratory enzymes in 
mitochondria (cytochrome c oxidase(COX)). Its involve-
ment extends to crucial physiological processes such as 
lipolysis ( phosphodiesterase 3B), [9] crosslinks of elastin 
and collagen (lysyl oxidase (LOX) and LOXL2), [20, 21] 
cell growth and proliferation (mitogen-activated pro-
tein kinase kinase 1 (MEK1) and MEK2), [9] autophagy 
(the kinases Unc-51 Like Autophagy Activating Kinase 
1 (ULK1) and ULK2), [22] iron absorption and trans-
port (ceruloplasmin), [23] signal transduction (dopamine 
β-hydroxylase), [24] reactive oxygen species (superoxide 
dismutase (SOD), glutathione (GSH)), epigenetic modi-
fication (LOXL2), leukocyte trafficking (amine oxidase 
copper containing 3), [25] as well as playing a role in car-
diovascular, nervous, and immune systems [14]. Dynamic 
fluctuations in copper levels within the body orchestrate 
the changes in external stimuli and biological states to 
control and regulate biological functions, underscoring 
the significance of copper homeostasis in sustaining nor-
mal physiological processes.

However, copper ion homeostasis can be easily dis-
rupted. Copper deficiency impairs the activity of cop-
per-dependent enzymes, affecting energy metabolism, 
glucose tolerance, immune responses, and the anti-
oxidant defense system, culminating in oxidative stress-
induced damage. Conversely, excess copper can cause cell 
damage mainly by enhancing free radicals to exacerbate 
oxidative stress and DNA damage, ultimately fostering 
malignant transformations [26]. Notably, perturbations 
in copper homeostasis correlate with chemotherapy 
resistance and immune checkpoint dysregulation [27, 
28]. Abnormal copper homeostasis may lead to neu-
rodegenerative diseases [29], metabolic diseases [30], 
cardiovascular diseases [31], tumors [32] and other 
multi-system diseases. Studies have demonstrated the 
association between elevated serum copper levels and 
various tumors, [32] elucidating the multifaceted involve-
ment of copper in tumorigenesis. For HCC fields, Caro-
line I. Davis et al. have demonstrated the vulnerability of 
copper homeostasis in HCC [33]. Increased serum cop-
per content may promote the progression from cirrhosis 
to HCC [34]. P. Dongiovanni has shown that increased 
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copper concentration in HCC is positively correlated 
with oxidative stress, impacting the occurrence and 
development of tumors [35]. C. Porcu’s study has shown 
that high copper concentrations regulate the Copper 
Transport Protein 1 axis, promoting the growth, migra-
tion, and invasion of liver cancer cells [34]. Xianglong 
Liu et  al. studied the differences between high copper 
and low copper phenotypes in HCC, showing that com-
pared with low copper subtype, patients with high cop-
per subtype had significantly abnormal immune function, 
a higher probability of gene mutation, and significantly 
weaker sensitivity and reactivity to chemotherapy drugs 
[36]. The specific mechanisms of copper in HCC are 
described as follows.

Cuproplasia and HCC
The mechanism of cuproplasia in HCC
Elevated copper levels pose a heightened risk of HCC, 
[34, 37] with HCC necessitating higher concentra-
tions of copper than normal cells for tumor growth 
and proliferation [9]. Consequently, the concept of 
cuproplasia emerged. Cuproplasia is characterized by 
copper-dependent cell growth and proliferation, [9] 
encompassing neoplasia and hyperplasia, as well as the 
primary and secondary effects of copper [38]. The mech-
anism of cuproplasia has been described in Fig. 1. Mech-
anistically, existing studies have shown that cuproplasia 
drives tumor progression via the following mechanisms: 
(1) Elevated copper levels affect glycolysis, lipid metabo-
lism, gluconeogenesis, collagen crosslinking, autophagy 
and other biological processes (2) Copper assists mito-
chondrial COX activity, promoting reactive oxygen spe-
cies (ROS) production and tumor cell proliferation; [39, 
40] (3) Copper regulation of signaling pathways like the 
Antioxidant protein 1 (ATOX)- Adenosine 5’-triphos-
phatase copper transporting alpha (ATP7A)-LOX path-
way enhances metastasis and expansion; [41] (4) Copper 
activation of pro-angiogenic factors such as vascular 
endothelial growth factor (VEGF), fibroblast growth fac-
tor 2 (FGF2), and tumor necrosis factor (TNF) promotes 
tumor angiogenesis; [9] (5) Copper-induced immune 
checkpoint expression, such as programmed death-
ligand 1 (PD-L1), [42] aids in evading immune injury, 
ultimately leading to tumor development and chemo-
therapy resistance [36].

Copper is strongly implicated in the development of 
cirrhosis and HCC, contributing to neoplasia [10, 37, 
43]. Patients with Wilson disease, an autosomal reces-
sive disorder of copper metabolism, exhibit a significantly 
elevated incidence of HCC. Copper accumulation may 
promote malignant transformation and cell death of liver 
cells [33]. Prolonged exposure to high-soluble copper 
induces significant morphological changes in the liver, 

increased cell cycle arrest, and suppressed lymphocytes, 
[44] thereby elevating the frequency of gene mutation [43, 
45]. Excessive copper exposure of liver cells could lead 
to the decrease of glucose 6-phosphate dehydrogenase 
(G6PDH) and GSH reductase, [46] excessive produc-
tion of ROS, and decreased antioxidant function, which 
increases the probability of gene damage. Moreover, it 
may induce mitochondria-mediated liver cell death and 
apoptosis [18, 47]. Additionally, copper directly binds to 
dual-specificity protein kinases1/2 (DSPK1/2) with high 
affinity, and is closely related to the classical oncogenic 
pathways such as BRAF-RAS-RAF-DSPK1/2-extracel-
lular-regulated kinase1(ERK1) and phosphatidylinositol 
3-kinase (PI3K)-3-Phosphoinositide-dependent protein 
kinase1-protein kinase B (PKB) signaling pathways [48]. 
Consequently, the collective increase in the risk of 
genetic mutations contributes to neoplasia. In addition, 
studies have shown that blocking copper transporter-
1(also known as copper importer solute carrier family 
31 member 1 (SLC31A1)) or reducing intracellular cop-
per levels could inhibit PI3K-PKB and mitogen-activated 
protein kinase (MAPK) signaling pathway, thereby sup-
pressing neoplasia [49–51]. SLC31A1 represents an 
important potential therapeutic target in HCC.

Clinical research has demonstrated the increased tis-
sue and intracellular copper accumulation in human 
HCC tissue samples, suggesting the necessity of cop-
per for tumor proliferation [52]. Elevated serum copper 
levels correlate with poorer HCC survival [53]. Isotopic 
copper studies suggested that the increased copper bur-
den in the TME is not sourced from dietary intake, but 
rather from the redistribution of copper to cysteine-rich 
proteins in the body [17]. Due to the substantial prolif-
eration demands, HCC cells necessitate increased energy, 
supported by copper acting as a cofactor for various 
mitochondrial respiratory enzymes (e.g., COX, SOD1, 
ATOX1). Consequently, HCC cells require higher cop-
per levels compared to normal cells for proliferation [9, 
10, 43, 45]. Elevated copper levels enhance the function 
of the respiratory enzymes in mitochondria, thereby aug-
menting mitochondrial respiration.

Copper also promotes hyperplasia via non-mitochon-
drial pathways. For instance, copper degrades phos-
phodiesterase, altering the activity of 3’,5’-cyclic AMP 
to stimulate lipolysis [54]. Dysregulated lipid metabo-
lism is a hallmark of HCC cells [55]. The cAMP path-
way facilitates the conversion of more triglycerides 
into glycerol and fatty acids, which can subsequently 
promote tumor proliferation. Additionally, copper 
alleviates the ULK1 and ULK2 pathways to enhance 
autophagic flux, [22] thus providing more copper-
dependent targets for tumor proliferation by regulat-
ing protein quality. The copper metabolism MURR1 



Page 4 of 20Zhang et al. Cancer Cell International          (2025) 25:137 

domain (COMMD) family plays crucial roles in 
either promoting or inhibiting HCC hyperplasia [56]. 
Increased COMMD 7 expressions and the reduction of 
COMMD1 and COMMD10 expressions in HCC tissues 
could promote hyperplasia via Nuclear factor kappa-B 
signal pathways [56, 57]. Elevated COMMD 3 expres-
sion in HCC tissues could stimulate the angiogenesis 
through hypoxia-inducible factor-1α/ VEGF/nuclear 
factor kappa-B pathway [58].

Cuproplasia in TME of HCC
TME, the microenvironment surrounding the tumor 
cells, significantly influences the pathogenesis of HCC 
[59]. Apart from malignant hepatocytes, the TME of 
HCC encompasses surrounding extracellular matrix 
(ECM), innate and adaptive immune cells, inflamma-
tory cells, Tumor-associated macrophages (TAMs), 
cancer-associated fibroblasts (CAFs), tumor-associated 
neutrophils, myeloid-derived suppressor cells (MDSCs), 

Fig. 1  The mechanism of cuproplasia in HCC. The cuproplasia is defined as the copper-dependent cell growth and proliferation, containing 
both neoplasia and hyperplasia. Copper is translated by the SLC31A1, and ATP7B and forms into the labile pool. (1) Copper could decrease 
the level of G6PDH and GRD, leading to the production of ROS and decreased antioxidant function, thus increasing the risk of genetic mutations 
in hepatocytes. Besides, through the BRAF-RAS-RAF-MEK-ERK and PI3K-PDK1-PKB signaling pathways, the risk of genetic mutations is increasing 
collectively in order to contribute to neoplasia. (2) Copper could promote hyperplasia through the mitochondrial pathways and non-mitochondrial 
pathways. Copper is the cofactor of various respiratory enzymes, the elevated copper could increase the number and the function of the respiratory 
enzymes in mitochondria such as the CCS, SOD1, COX, and ATOX1, thus the mitochondrial respiration is enhanced. Besides, copper could inhibit 
the PDE, which could degrade the cAMP. Thus, more triglycerides are transformed into glycerol and fatty acids through cAMP pathway, increasing 
the lipolysis in HCC, and consequently promoting tumor proliferation. (3) In addition, copper alleviates the ULK1 and ULK2 pathways to enhance 
autophagic flux, providing more copper-dependent targets for tumor proliferation by controlling protein quality. (4) Furthermore, copper is involved 
in the COMMD family and LOX family through HIF1α/VEGF/NF-κB pathway and ATOX–ATP7A–LOX pathways, then the angiogenesis is promoted. 
All of those above lead to hyperplasia. ATOX1 antioxidant protein 1, cAMP 3’,5’-cyclic AMP, cdc25 cell division cyclin25, CCS copper chaperone 
for superoxide dismutase, COMMD copper metabolism MURR1 domain, COX cytochrome c oxidase, eNOS endothelial nitric oxide synthase, G6PDH 
glucose 6-phosphate dehydrogenase, LOX lysyl oxidase, MEK1/2 mitogen-activated protein kinase kinase 1/2, HIF-1α hypoxia-inducible factor-1α, 
mTOR mammalian target of rapamycin, Nf-kB Nuclear factor kappa-B, NO nitric oxide, p53 transformation-related protein 53, PDE phosphodiesterase, 
PDK1 3-Phosphoinositide-dependent protein kinase 1, PDGF platelet-derived growth factor, PI3K phosphatidylinositol 3-kinase, PKB protein kinase 
B, ROS reactive oxygen species, SCO1 synthesis of cytochrome c oxidase 1, SOD recombinant superoxide dismutase, STEAPs Six-transmembrane 
epithelial antigen of the prostate, ULK Unc-51 Like Autophagy Activating Kinase, VEGF vascular endothelial growth factor
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endothelial cells, surrounding micro-vessels, and various 
cytokines and chemokines [60]. These cells interact with 
HCC, forming an immunosuppressive microenvironment 
[61, 62]. In addition, modified enzymes such as proteases, 
metabolic feedstocks, metabolites, exosomes, micropar-
ticles, and biophysical properties including adhesion and 
viscoelasticity are also important parts of TME.

The TME in HCC is marked by aberrant angiogenesis, 
immunosuppression, dysregulated ECM remodeling, and 
chronic inflammation, initiating tumorigenesis, growth, 
self-renewal, metastasis, and immune escape, while 
hindering various anti-tumor treatments [63, 64]. For 
instance, malignant hepatocytes secrete VEGF to create 
a tumor-promoting microenvironment, [65] while innate 
and acquired immune cells exhibit dual effects of tumor 
promotion and anti-tumor activities [8]. Tumor-infiltrat-
ing lymphocytes, comprising T cells, B cells, and others, 
are frontline defenders combating tumors with relentless 
attacks until pathogens are eradicated. However, anti-
tumor responses of Tumor-infiltrating lymphocytes are 
hindered in tumor patients, impeding effective tumor 
eradication due to factors like cuproplasia induced by 
mild copper elevation, as discussed below.

T cells, pivotal in adaptive immunity and antitumor 
responses, consist of helper, cytotoxic, and memory sub-
sets. Nonetheless, within the tumor microenvironment, 
these cells endure prolonged ischemia, hypoxia, and 
arginine deficiency, impairing their normal functions. 
For instance, microenvironmental lactate accumula-
tion substantially hampers T cell proliferation, cytokines 
secretion, and cytotoxic activity [66]. Furthermore, stud-
ies have indicated that increased microenvironmental 
copper levels correlate positively with PD-L1 expression. 
PD-L1, a well-studied immune checkpoint, binds to PD1, 
inducing T cell apoptosis and exhaustion by inactivat-
ing downstream pathways like Ras/MAPK, PI3K/AKT, 
etc [67]. Zhou et al. reported similar findings, suggesting 
DSF/Cu upregulates PD-L1 expression by inhibiting poly 
(ADP-ribose) polymerase 1 (PARP1) activity and inacti-
vating glycogen synthase kinase-3β (GSK3β). This con-
current upregulation of ligands and receptors for immune 
checkpoints likely enables HCC to evade T cell-mediated 
killing [68]. Although upregulation of ligands and recep-
tors for immune checkpoints, such as anti-PD1 therapy, 
has been approved for HCC and generally have manage-
able side effects, some patients may struggle with toler-
ability, leading to potential treatment discontinuation or 
reduced efficacy [69]. Understanding individual tolerance 
levels and side-effect profiles is thus critical for optimiz-
ing therapy in HCC patients and enhancing responses to 
immune checkpoint inhibitors. In order to enhance the 
tolerability and efficacy of treatments, future research 
directions may include gaining a deeper understanding 

of the biology of immune checkpoints to improve current 
checkpoint blockade therapies and inform the develop-
ment of the next generation of immunotherapies [70].

Macrophages, crucial TME components, form an 
immune barrier, engaging in antitumor activities through 
antigen phagocytosis and cytokine secretion like TNF-α. 
Moreover, macrophages present antigens to lymphocytes, 
bolstering adaptive immunity [71]. TAMs, a subtype of 
macrophages in TME, are abnormally activated, includ-
ing the naïve macrophages (also known as M0 mac-
rophages), M1 macrophages activated by interferon, and 
the M2 macrophages activated by anti-inflammatory 
factors [72]. M1 macrophages produce anti-tumor fac-
tors like TNF-α, whereas M2 macrophages with lower 
antigen-presenting ability produce tumor growth factors 
and angiogenic factors (such as IL-6, IL-10, VEGF) that 
promote tumor growth [72]. Excess copper could lead 
to significant suppression of macrophage function [73]. 
Given significantly elevated copper levels in both tumor 
tissue and serum of HCC patients compared to normal 
individuals, copper likely influences macrophage differ-
entiation akin to other metabolites and cytokines, which 
promote M2 macrophage polarization [74].

CAFs are inhibitory intermediates in the TME that cor-
relate with poor prognosis in HCC [75]. CAFs participate 
in ECM remodeling, [76] and release IL-6, FGFs, VEGF, 
hepatocyte growth factors, and other cytokines to recruit 
inflammatory and immune cells to affect the immune 
response process [77, 78]. Tumor-infiltrating natural 
killer (NK) cells, whose abundance correlates positively 
with overall survival, exhibit cytotoxicity through per-
forin, granzyme, Factor-related Apoptosis ligand, etc., 
while modulating immune responses via cytokines and 
chemokines secretion, along with antigen presentation 
[79]. Copper chelators have been observed to augment 
NK cell infiltration, suggesting elevated copper levels 
may impede NK cell survival, proliferation, recruitment, 
and cytotoxic activity. Thus, employing copper chelators 
could offer a novel and promising therapeutic strategy 
[80]. Additionally, diverse immune cells (e.g., B cells, neu-
trophils, MDSCs) represent crucial immunosuppressive 
elements in the TME [3]. These cells interact with HCC, 
shaping an immunosuppressive microenvironment [61, 
62].

The anti-tumor activity of the immune cells relies on 
intact mitochondrial respiration [81]. Imbalance of cop-
per homeostasis can impair immune response of immune 
cells to tumor cells [81]. Due to the significance of copper 
in mitochondrial metabolism, cuproplasia enhances the 
mitochondrial respiration of HCC cells, rendering them 
more resistant to immune cell elimination. Besides, in 
the COMMD family, the expression of COMMD2/3/10 
is strongly associated with immune infiltration in HCC, 
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[82] especially M0 macrophages, and neutrophils, [83] 
promoting the occurrence and development of TME. 
The LOX family, as the copper-dependent enzyme, acts 
on the remodeling of structural ECM crosslinks, promot-
ing TME formation in HCC [84]. Research showed that 
the LOX-like2 (LOXL2) and LOXL4 is highly expressed 
in HCC tissues [85, 86]. ECM induces the upregulation of 
hypoxia-inducible factor-1α through DSPK1/2-ERK1/2 
pathway that further stimulates LOXL2 expression in 
TAMs [87]. CAFs could up-regulate the expressions of 
LOXL2 in HCC cells, while HCC could also up-regulate 
the expression of LOXL2 in CAFs. This forms a positive 
cycle to significantly promote TME and HCC invasion 
[86].

Furthermore, LOXL4 induces an immunosuppres-
sive phenotype of macrophages, leading to upregulation 
of PD-L1 expression and further inhibiting CD8 + T cell 
function [88]. Voli and his colleagues first indicated that 
copper regulates PD-L1 expression, serving as a down-
stream target of intratumoral copper [28]. The significant 
function of PD-L1 in the suppressive TME has been fully 
discussed, and enormous drugs targeting PD-L1 have 
been developed [89]. Beyond being highly expressed 
on the surface of T lymphocytes, B lymphocytes, mac-
rophages, and dendritic cells, PD-L1 is highly expressed 
in HCC cells [60]. PD-1/PD-L1 pathway induces T lym-
phocytes apoptosis and exhaustion, suppresses B lym-
phocytes activation, negatively affects the differentiation 
of T lymphocytes, and inhibits tumor-specific T cell 
proliferation, [90] thus promoting immune tolerance 
and suppressive TME. The research found that copper 
chelators reducing the copper in tumor tissues could 
significantly decrease the expression of PD-L1, thereby 
increasing the tumor-infiltrating NK cells and CD8+ T 
cells to promote new immune cell clones and enhance 
the anti-tumor immune responses, indicating the inhibi-
tory effect of copper on TME [28].

Moreover, cuproplasia in TME activates HCC cells to 
secret more proangiogenic factors such as basic fibroblast 
growth factors, VEGF, and fibroblast growth factor 2, 
3-phosphoinositide dependent protein kinase 1, enhanc-
ing migration and invasion of endothelial cells, thereby 
promoting angiogenesis [49, 62, 91]. Angiogenesis is an 
important factor in tumor progression. LOX family also 
promotes peritumoral angiogenesis by upregulating the 
expression of VEGF and platelet-derived growth fac-
tors [88, 92]. Through the ATOX1–ATP7A–LOX path-
ways, the LOX family promotes the distant metastasis of 
HCC [41]. Copper in TME also activates copper-related 
pathways such as the MAPK pathway, [48] the apyrimi-
dinic endonuclease-1/redox effector factor 1 to promote 
HCC tumorigenesis and metastasis [93]. Studies have 
shown that Cu2+ could bind with CD147 to activate the 

PI3K-PKB pathway, stimulating surrounding fibroblasts 
to highly express angiogenic activators like matrix met-
alloproteinase 2, thus increasing HCC invasiveness [12].

Cuproptosis and HCC
The mechanism of cuproptosis
Cuproptosis is a currently discovered form of pro-
grammed cell death, distinct from known mechanisms 
triggered by copper and dependent on mitochondrial res-
piration [16]. The current understanding of the cupropto-
sis mechanism is depicted in Fig.  2. However, the more 
precise mechanisms require further investigation.

Copper, a key element in mitochondria, is involved 
in the assembly of copper enzymes such as COX, anti-
oxidant enzyme superoxide dismutase 1, and respira-
tory complex IV [43]. The onset of cuproptosis relies on 
mitochondrial respiration and is closely related to the 
tricarboxylic acid (TCA) cycle [16]. Normal cells regulate 
intracellular copper through copper importer SLC31A1 
and exporter ATP7B [94]. Both transporters are strongly 
related to cuproptosis [95]. When the level of copper in 
ECM is elevated, elesclomol, a copper ionophore, trans-
ports copper into the intracellular matrix [96]. Elesclomol 
enhances the ferredoxin 1 (FDX1), a reductase capa-
ble of reducing Cu2+ to more toxic Cu+ [97]. Addition-
ally, FDX1 disrupts Fe-S protein balance and promotes 
lipidation and aggregation of enzymes involved in the 
regulation of the TCA cycle, especially dihydrolipoam-
ide S-acetyltransferase (DLAT) [98]. Excess Cu+ induces 
proteotoxic stress rather than copper-induced mitochon-
drial oxidative stress by causing mitochondrial lipidated 
protein oligomerization [16]. Moreover, cuproptosis 
induction impairs mitochondrial respiration, resulting in 
reduced ATP synthesis. ATP depletion activates Adeno-
sine 5’-monophosphate(AMP)-activated protein kinase 
(AMPK), triggering the phosphorylation of high-mobil-
ity group box  1 (HMGB1) [99]. Under normal circum-
stances, HMGB1 primarily resides in the nucleus, tightly 
bound to nucleosomes [100]. Upon AMPK-induced 
phosphorylation, HMGB1 dissociates from histones, 
leading to increased extracellular release, inflammation, 
[99] exacerbation of cell death, and tissue damage (Fig. 3).

Cuproptosis in HCC
Cuproptosis is triggered by abnormal expression of 
cuproptosis-related genes (CRGs) [101]. Numerous 
CRGs have been identified in HCC involving in copper 
ion metabolism and mitochondrial function (Table  1). 
Sun et  al. found that FDX1 downregulation activates 
mitophagy and the PI3K/AKT signaling pathway, pro-
moting HCC progression through elevated ROS pro-
duction [102]. DLAT was overexpressed in HCC tissues 
and promotes HCC cell proliferation [103]. Lipoic acid 
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significantly inhibited cell migration and invasion in 
HCC cells [104]. These genes contribute to regulating 
copper-dependent cell death mechanisms, which could 
influence HCC progression. Additionally, anti-cuprop-
tosis genes (e.g., GLS, MTF1, CDKN2A) may be linked 
to antioxidant functions, stemness formation, angiogen-
esis, DNA repair, and methylation [105–107]. Copper 
transporters (e.g., SLC31A1, ATP7B) enable HCC cells to 
counteract the cytotoxic effects of copper buildup, allow-
ing tumor cells to evade apoptosis [108]. For additional 

information on CRGs’ roles and mechanisms in HCC 
development, refer to Table  1. These findings indicate 
that targeting CRGs and copper homeostasis may offer 
new therapeutic strategies for HCC. Further research 
is needed to clarify these pathways and their effects on 
HCC treatment outcomes.

Among the CRGs, 7 pro-cuproptosis genes (FDX1, 
DLAT, lipoic acid synthetase gene, lipoyltransferase 
1, dihydrolipoamide dehydrogenase gene, pyruvate 
dehydrogenase E1 subunit beta gene, and pyruvate 

Fig. 2  Cuproplasia in TME of HCC. The TME in HCC is marked by aberrant angiogenesis, immunosuppression, dysregulated ECM remodeling, 
hypoxia, reprogramming, and chronic inflammation, initiating tumorigenesis, growth, self-renewal, metastasis, and immune escape. Cuproplasia 
induces high expression of LOX2 or LOX4 in HCC cells, CAFs, and TAMs, leading to the release of factors such as VEGF, PDGF, HGF, and FGF. 
These factors promote endothelial cell survival, proliferation, and angiogenesis, while also upregulating MMP2 expression by CAFs, thereby 
enhancing HCC invasiveness. Furthermore, cuproplasia upregulates PDL1 expression in HCC cells, CAFs, TAMs, and NK cells, resulting in apoptosis 
and exhaustion of CD8 + T cells. Alongside other cytokines, chemokines, metabolic substances, ROS, exosomes, etc., an immunosuppressive 
TME ultimately develops. CAFs cancer-associated fibroblasts, ECM extracellular matrix, FAK focal adhesion kinase, FGF fibroblast growth factor, 
HCC hepatocellular carcinoma, HGF hepatocyte growth factor, LOX2 lysyl oxidase-like2, LOX4 lysyl oxidase-like4, MAPK Mitogen-Activated Protein 
Kinase, MMP2 Matrix metalloproteinase 2, NK cells natural killer cells, PI3K phosphatidylinositol 3-kinase, PDGF platelet-derived growth factor, 
PDL1 programmed death-ligand 1, RAS rat sarcoma, ROS reactive oxygen species, TAMs Tumor-associated macrophages, TAN tumor-associated 
neutrophils, TME tumor microenvironment, VEGF vascular endothelial growth factor
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dehydrogenase E1 subunit alpha 1 gene), 3 anti-cuprop-
tosis genes (glutaminase gene, metal regulatory tran-
scription factor 1 gene, and cyclin-dependent kinase 
inhibitor 2A gene), and 2 transporters (SLC31A1 and 
ATP3B) are involved in the process of cuproptosis [95]. 
Unlike apoptosis, mitochondrial ROS, B-cell lymphoma-
2-associated X protein, B-cell lymphoma-2-antagonist/
killer 1, and caspase activation required for apoptosis are 
not required for cuproptosis, [16] despite the decrease 
in mitochondrial membrane potential [16, 99]. Oxida-
tive stress inhibitors (e.g., N-acetylcysteine), ferroptosis 
inhibitors (e.g., ferrostatin-1), or cell necrosis inhibitors 
(e.g., necrostatin-1) cannot inhibit cuproptosis. However, 
copper chelators, inhibitors of respiratory chain complex 

I (Rotenone), II (Rustin), and III (antimycin A), and 
inhibitors of mitochondrial pyruvate uptake (UK5099) 
can inhibit cuproptosis [16]. Cuproptosis is unaffected 
by mitochondrial uncouplers like Synonyms of Carbonyl 
cyanide 4-(trifluoromethoxy) phenylhydrazone, sug-
gesting that mitochondrial respiration rather than ATP 
production is required for cuproptosis [16]. The mito-
chondrial quality control systems like mitophagy, and 
AMPK-mediated autophagy pathway could promote 
mitochondrial health and homeostasis. Mitophagy could 
self-repair mitochondria to enhance respiratory function 
under stressful situations, [109] indicating that activating 
those mitochondrial quality control systems may limit 
cuproptosis [98, 109].

Fig. 3  Cuproptosis and its mechanism in HCC. The cuproptosis is closely related to mitochondrial respiration and the TCA cycle and is triggered 
by the elesclomol, which could translate elevated extracellular copper to intracellular matrix not only the cell membrane importer SLC31A1 
and exporter ATP7B. Besides, elesclomol could enhance the FDX1 to reduce Cu2+ to become the more toxic Cu+. FDX1 is the key enzyme 
of cuproptosis, causing Fe-S protein imbalance thus leading to the Fe-S cluster, and promoting the lipoylation of DLAT. The Cu + binds 
to the lipoylated DLAT aggregation to participate in the formation of the PDH complex, which could affect the mitochondrial TCA cycle, leading 
to ATP depletion. Depletion of ATP will lead to intracellular inflammation through the AMPK pathway. In addition, the lipoylated DLAT aggregation 
and excess Cu.+ could induce proteotoxic stress through mitochondrial lipidated protein oligomerization. Eventually, these serious consequences 
lead to the cuproptosis. AMPK Adenosine 5’-monophosphate(AMP)-activated protein kinase, ATP Adenosine 5’-triphosphate, ATP7B Adenosine 
5’-triphosphatase copper transporting beta, DLAT dihydrolipoamide S-acetyltransferase, ECT electron transport chain, FDX1 ferredoxin 1, LIAS lipoic 
acid synthetase, TCA​ tricarboxylic acid, PDH Pyruvate dehydrogenase, SLC31A1 solute carrier family 31 member 1
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The dysregulation of CRGs is closely related to the 
occurrence and development of HCC, [101, 110–113] 
and CRGs expressions strongly correlate with the 
immune-suppressive TME in HCC [111, 114]. CRGs ena-
ble the identification of HCC subtypes (Table 1). Altered 
expression of CRGs such as SLC31A1 and ATP7B is sig-
nificantly associated with elevated copper levels in HCC 
tissues [33]. Multi-omics analysis reveals that CRGs 
could identify HCC patients with suppressed immune 
TME, increased expression of immune checkpoint mol-
ecules, and poor prognosis [111]. CRG scores inversely 
correlate with the expression of immune-related genes 
and positively correlate with the expression of DNA 
repair-related genes [115]. A bioinformatics analysis 
results showed that CRG score was significantly corre-
lated with the infiltration of M2 macrophages and neu-
trophils in TME [116]. M2 macrophages induce hypoxia 
and suppress the immune system, [117] while neutrophils 
secrete chemokine ligands that mediate the infiltration 
of M2 macrophages and regulatory T cells, reshaping the 
TME to suppress the immune response [118].

CRGs were expressed to varying degrees in all cell 
types of TME [111]. For instance, SLC31A1 is positively 
correlated with the abundance of M1 macrophages and 

neutrophils, while FDX1 positively correlates with the 
abundance of activated memory CD4+ T cells [111, 114]. 
Some cuproptosis-activating genes (e.g., lipoic acid syn-
thetase gene, lipoyltransferase 1, FDX1, and pyruvate 
dehydrogenase E1 subunit alpha 1 gene) exhibit resist-
ance to drugs with broad anti-inflammatory activity, 
speculating the similar anti-inflammatory biological 
activities of those genes, consistent with the suppressed 
immune infiltration [115]. High expression of DLAT in 
cancer tissues enables HCC cells to evade the immune 
system and foster an inhibitory immune microenvi-
ronment [119]. The proportion of Tregs among HCC 
patients with long overall survival is higher than that 
among those with shorter survival, [110] partly due to 
Tregs’ involvement in regulating cuproptosis-induced 
inflammatory responses and oxidative stress in the TME 
[110].

Cuproptosis is speculated to shape the antitumor 
immune environment, but its inhibitory effect on immu-
notherapy remains uncertain. [120] Previous research 
showed that various immune checkpoint genes (ICGs) 
such as butyrophilin subfamily 2 member A1 gene, Buty-
rophilin-like protein 9, CD40 antigen ligand, signal regu-
latory protein alpha gene, and TNF receptor superfamily 

Table 1  The CRGs and their developed scoring methods in HCC

ALDH5A1 aldehyde dehydrogenase 5 family member A1, ATP7A ATPase copper transporting alpha, ATP7B ATPase copper transporting beta, BAD BCL2 associated 
agonist of cell death, BTNL9 butyrephilin like 9, BTN2A1 butrophilin subfamily 2 member A1, CAT​ catalase, CCS copper chaperone for superoxide dismutase, 
CD40LG CD40 antigen ligand, CDKN2A cyclin dependent kinase inhibitor 2A, CRG​ cuproptosis-related gene, CRRS cuproptosis-related risk score, CRGPI cuproptosis-
related gene prognostic index, DBT dihydrolipoamide branched chain transacylase E2, DLAT dihydrolipoamide S-acetyltransferase, DLST dihydrolipoamide 
S-succinyltransferase, DLD dihydrolipoamide dehydrogenase, EHHADH enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase, FDX1 ferredoxin 1, GCSH glycine 
cleavage system protein H, GLS glutaminase, ICG immune checkpoint genes, LIAS lipoic acid synthetase, LGALS9 galectin 9, SLC27A solute carrier family 27A, LIPT1 
lipoyltransferase 1, MTF1 metal regulatory transcription factor 1, MTOR mammalian target of rapamycin, MPC1 mitochondrial pyruvate carrier 1, NRF2 Nuclear factor 
erythroid2-related factor 2, PDHA1 pyruvate dehydrogenase E1 subunit alpha 1, PDHB pynuvate dehydrogenase E1 subunit beta, SIRPA signal regulatory protein 
alpha, SLC31A1 solute carrier family 31 member 1, TNFRSF4 TNF receptor superfamily member 4

Researchers CRGs The Highlights References

Zhen Zhang and his colleagues FDX1 and related genes(ALDH5A1, CAT, EHHADH, 
and SLC27A)

CRRS: The high CRRS group showed lower survival 
and increased tumor immune infiltration

[10]

Lei Ding and his colleagues CDKN2A, DLAT, DLD, FDX1, GLS, LIAS, LIPT1, MTF1, 
PDHA1, and PDHB

1. Three subtypes of cuproptosis were validated;
2. CRGPI: could be used as a potential biomarker 
for prognosis and immunotherapy in HCC 
patients

[112]

Zhiqiang Liu and his colleagues ATP7A, ATP7B, DBT, DLAT, DLD, DLST, FDX1, GCSH, 
LIAS, LIPT1, PDHA1, PDHB, and SLC31A1

1. Three subgroups of patients based on CRGs 
were revealed;
2. A cuproptosis-related prognostic risk model 
was built to predict prognosis

[113]

Jie Fu and his colleagues ATP7A, ATP7B, CDKN2A, DLAT, DLD, FDX1, GCSH, 
GLS, LIAS, LIPT1, LIPT2, MPC1, MTF1, PDHA1, PDHB, 
SLC31A1

1. Three distinct CRGs expression patterns were 
identified;
2. CRRS was established to predict the prognosis, 
the immune microenvironment, and expression 
of immune checkpoint molecules

[111]

Tianhao Cong and his colleagues Cuproptosis-related ICGs (BTN2A1, BTNL9, CD276, 
CD40LG, LGALS9, SIRPA, TNFRSF4)

Cuproptosis-related ICGs were developed to pre-
dict the prognosis and immune response of HCC 
patients

[114]

Xi Chen and his colleagues ATP7A, ATP7B, BAD, PDHA1, CCS, CDKN2A, DLAT, 
DLD, FDX1, GLS, LIAS, LIPT1, MTF1, MTOR, NRF2, 
PDHB, and SLC31A1

1. Three cuproptosis subtypes were identified;
2. Cuproptosis signature has been built contain-
ing five cuproptosis-associated genes: CLEC3B, 
CFH, HPR, LAMB1, and PFKFB3

[101]
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member 4 gene are co-expressed with CRGs [114]. High 
expression of CRGs is positively correlated with the 
immune checkpoint molecules [111]. ICGs are closely 
related to the incidence and development of HCC, which 
forms the basis of immunotherapy and immune check-
point inhibitor (ICI) therapy [121]. Additionally, the 
CRGs are closely associated with the immunosuppressive 
TME, which is also an essential indicator of ICI therapy. 
Therefore, CRGs affect the immune microenvironment 
and are throughout the development of HCC, which is 
closely related to immunotherapy.

HCC cells exhibit both aerobic respiration (oxidative 
phosphorylation) and glycolysis, with a preference for 
glycolysis, a phenomenon known as the Warburg effect 
[122]. This metabolic characteristic suggests that HCC 
proliferation is characterized by increased glycolysis even 
under the presence of O2 [123]. Besides, HCC thrives in 
a hypoxic TME, further promoting glycolysis [61]. The 
increased glycolysis is closely related to the proliferation, 
angiogenesis, and metastasis of HCC [124, 125]. Thus, 
inhibiting glycolysis or reversing the hypoxic TME can 
potentially delay HCC progression [126]. Cuproptosis 
is closely related to mitochondrial respiration, mainly 
involving oxidative phosphorylation [16]. The occurrence 
of cuproptosis requires enhanced oxidative phosphoryla-
tion level and improved aerobic TME. Therefore, pro-
moting cuproptosis in HCC may alleviate mitochondrial 
dysfunction and hypoxic TME, thus reducing the glyco-
lysis in HCC cells, offering a fascinating perspective for 
clinical treatment [127].

The relationship between cuproplasia 
and cuproptosis
The occurrence of cuproplasia or cuproptosis in a cell 
is contingent upon the concentration of copper ions. 
Slightly increased copper concentrations not only sustain 
cellular functions and fulfill physiological and metabolic 
needs but also contribute to tumorigenesis, as previously 
elucidated in detail, resulting in cuproplasia [9]. Con-
versely, surpassing a specific threshold of copper leads 
to cuproptosis, apoptosis, ferroptosis, and other cel-
lular responses [27]. Nonetheless, cells exhibit varying 
degrees of copper tolerance. Studies have revealed nota-
bly heightened copper levels in diverse tumor tissues, 
indicating enhanced capacity of tumor cells in copper 
utilization and tolerance [80]. This could be attributed 
to the maximal utilization of cuproplasia by tumor cells 
to proliferate via the aforementioned mechanisms, along 
with heightened autophagy aimed at clearing ROS pro-
duced by the elevated copper-induced Fenton reaction, 
thereby shielding tumor cells from cytotoxic effects of 
uncontrolled peroxidation. However, genes linked to 
these mechanisms could be either downregulated or 

upregulated in anti-tumor immune cells. For instance, 
autophagy plays a crucial role in sustaining T cell prolif-
eration and function. However, tumor-infiltrating T cells 
exhibited notable downregulation of autophagy-related 
genes with decreased autophagic flux, leading to inhibi-
tion of T cell proliferation and oxidative stress [128].

The autophagy pathway plays a crucial role in connect-
ing the mechanisms of both cuproplasia and cuproptosis. 
Lower copper levels can alleviate the ULK1 and ULK2 
pathways, thereby enhancing autophagic flux, regulat-
ing protein quality, and ultimately promoting copper-
dependent tumor proliferation. Additionally, autophagy 
could be induced by metabolic stress, hypoxia, redox 
stress, and immune signaling such as damage-associ-
ated molecular patterns [129]. Upregulated autophagy 
in tumor cells can facilitate tumorigenesis and progres-
sion by reducing ROS accumulation and providing essen-
tial nutrients for survival. Autophagy also contributes to 
the degradation of granzyme B released by NK cells and 
cytotoxic T lymphocytes, as well as major histocompat-
ibility complex class I in dendritic cells, promoting tumor 
immune evasion [130]. Furthermore, chemoresistance 
and distant metastasis in HCC could be attributed to 
enhanced autophagy, which decreases the sensitivity to 
chemotherapy and inhibits anoikis [130].

However, the disruption of the mitochondrial TCA 
cycle by excess copper leads to ATP depletion, triggering 
intracellular inflammation and increased autophagy via 
the AMPK pathway, exacerbating the process of cuprop-
tosis. Therefore, autophagy acts as a double-edged sword 
in tumors, with its specific role determined by the spe-
cific tumor type, differentiation degree, pathological 
stage, and the TME context. Elesclomol–CuCl2 can miti-
gate resistance to docetaxel by inhibiting autophagy in 
prostate cancer cells [131]. In colorectal cancer models, 
tretinoin demonstrates antitumor effects by inhibiting 
both proliferation and autophagy [132]. Although direct 
evidence is lacking for the involvement of autophagy 
inhibition in cuproplasia or cuproptosis in HCC, the role 
played by inhibition of autophagy in other tumors pre-
sents suggestive testimony. ROS mediates the processes 
of cuproplasia and cuproptosis. Copper may reduce 
G6PDH and GRD levels, resulting in ROS production 
and decreased antioxidant function. This increases the 
risk of genetic mutations in hepatocytes, thereby pro-
moting neoplasia [133]. Copper also enhances the activ-
ity of copper chaperone for superoxide dismutase and 
SOD1, which convert superoxide, with high activity, into 
hydrogen peroxide. This reduces ROS production in the 
mitochondrial membrane and mitigates ROS-induced 
damage to tumor cell proteins and lipid membranes 
[134]. Moreover, ROS increases autophagic flux, thereby 
offering additional copper-dependent targets for tumor 
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proliferation by regulating protein quality [22]. MDSCs, 
TAMs, and neutrophils exert immunosuppressive func-
tions through various pathways such as Treg induction, 
production of high levels of arginase-1 and ROS. Cop-
per chelator usage substantially decreased MDSCs infil-
tration, indicating a proportional relationship between 
copper levels and MDSCs recruitment [80]. Elevated 
copper levels promote increased MDSCs and ROS levels, 
creating an immunosuppressive microenvironment that 
mediates immune evasion. Mitochondrial Fe-S cluster 
proteins, involved in the synthesis of heme, lipoic acid, 
and biotin in mitochondria, are crucial constituents of 
the TCA cycle and the electron transport chain com-
plexes [135]. Copper cytotoxicity results in Fe-S clus-
ter loss, leading to reduced mitochondrial membrane 
potential, inhibition of the electron transport chain com-
plexes and TCA cycle, and initiation of the Fenton reac-
tion, resulting in substantial ROS production. ROS burst 
exacerbates cuproptosis by inducing multifaceted cellular 
damage, including DNA damage, mitochondrial dysfunc-
tion, and membrane integrity disruption.

The clinical significance and prospect 
of cuproplasia and cuproptosis in HCC
Copper compounds and nano‑copper
Copper induces both cuproplasia and cuproptosis in 
HCC. Tumor cells need more copper than normal cells 
for proliferation, angiogenesis, and metastasis, [43] while 
excessive copper also triggers cuproptosis. Thus, inhib-
iting cuproplasia and enhancing cuproptosis in HCC 
could be prospective therapeutic strategies. Cellular 
fate, whether cuproplasia or cuproptosis, is determined 
by the level of copper concentration. Consequently, tar-
geting copper via copper chelators to mitigate cupro-
plasia or copper ionophores to enhance cuproptosis 
has emerged as a highly promising therapeutic avenue 
for various copper-associated diseases, including HCC. 
Identifying the multifaceted roles of crucial molecules 
involved in autophagy and ROS regulation in cupropla-
sia and cuproptosis, along with potential targets, agents, 
and combined therapeutic interventions utilizing cop-
per compounds, may yield more efficacious therapeutic 
strategies. Copper compounds, appropriately complexed, 
hold promise as potential drugs for HCC treatment with 
minimal side effects [27].

Clinically used copper compounds include copper 
chelators and copper ionophores, both exhibiting out-
standing anticancer activity and promising prospects in 
cancer therapy (Table  2) [91]. Copper chelators inhibit 
cuproplasia in tumor cells, contributing to therapeu-
tic efficacy [32]. Numerous copper chelators have been 
developed at present, [136] and studies have demon-
strated their ability to inhibit the formation of new 

blood vessels, thereby preventing angiogenesis [52, 137]. 
Tetrathiomolybdate (TTM), a copper chelator capable 
of inhibiting copper absorption, has demonstrated effi-
cacy in reducing the tumorigenicity of HCC cell lines. 
It also inhibits glycolysis, reducing the energy supply to 
tumor cells, and thereby impeding tumor initiation and 
progression [33]. Given that the occurrence and devel-
opment of HCC are closely linked to angiogenesis, there 
has been a surge in research aiming to inhibit this pro-
cess, leading to advancements in anti-HCC therapies 
focused on antiangiogenesis. Penicillamine, known for 
its role as an antidote for heavy metal poisoning and in 
treating Wilson’s disease, has emerged as a potential anti-
HCC drug due to its strong copper chelating properties 
and anti-angiogenic effects [138]. Trientine, an alterna-
tive for patients with Wilson’s disease who cannot tol-
erate penicillamine, is another effective copper chelator 
that inhibits angiogenesis. Sone K et  al. reported that 
trientine not only inhibits the proliferation of vascular 
endothelial cells but also promotes tumor cell apoptosis, 
exhibiting a remarkable and promising anti-tumor activ-
ity [139]. Besides, copper chelators could reduce PD-L1 
expression in tumor tissue, stimulate anticancer immune 
responses, and inhibit immune checkpoints [28]. In addi-
tion, pro-chelators are developed to enhance selectivity 
against cancer cells [140]. By utilizing stimuli primar-
ily present in the TME, pro-chelators enhance targeting 
activity and therapeutic effects with little off-target tox-
icity [136, 141]. Regarding copper ionophores, research 
found that in some cases there may be a critical copper 
solubility and a narrow window that enables more copper 
to accumulate in HCC tumor cells leading to cuproptosis 
and thus selectively killing tumor cells [15]. Disulfiram, a 
widely studied copper ionophore, can inhibit the activ-
ity of PARP1, promote the phosphorylation of GSK-3β at 
the Ser9 site, and ultimately lead to the increase of PD-L1 
expression and stimulate cell apoptosis [68]. Elesclomol, 
a highly lipophilic and potent copper-binding molecule, 
transports excess copper into mitochondria, causing loss 
of lipoylated mitochondrial proteins and Fe-S cluster pro-
tein, triggering intense oxidative stress, ultimately lead-
ing to cuproptosis in HCC cells [142].

To enhance the selectivity of copper ionophores, pro-
ionophores and nano-drug delivery systems can be used 
as Valentina Oliveri and her colleagues detailed in their 
review [32]. Nano-copper is a popular potential anti-
tumor drug for chemodynamic therapy recently, [143] 
which regulates the immunosuppressive TME by acti-
vating ROS to kill tumor cells and alleviate the hypoxic 
microenvironment to trigger immunogenic cell death 
[144]. GSH is overexpressed in the TME and severely 
depletes ROS to limit the chemodynamic therapy [145]. 
Studies have found that Cu2+ released by nano-copper 
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Table 2  Drugs or medicines for HCC according to the copper mechanism

AP-1 activator protein-1, ERK extracellular regulated protein kinases, GSK-3β glycogen synthase kinase 3β, hctr1 human copper transporter 1, JNK c-Jun N-terminal 
kinase, ligand-L di(2-picolyl)amine-3(bromoacetyl)coumarin hybrid molecule, MAPK Mitogen-Activated Protein Kinase, MT-CO1 mitochondrially encoded cytochrome 
c oxidase I Gene, PARP1 poly (ADP-ribose) polymerase 1, PD-1 programmed cell death protein 1, RAS rat sarcoma, SAPK stress-activated protein kinase, SIH-1 
salicylaldehyde isonicotinoyl hydrazone

Researchers Types of Medicine Medicines Mechanisms References

Caroline I Davis et al Copper chelators Tetrathiomolybdate(TTM) Cuproplasia TTM can reduce the 
tumorigenicity of HCC cell lines as 
well as inhibit glycolysis to reduce 
the energy supply to tumor cells

[33]

Sone K.; Yoshii J. et al Trientine Trientine can suppress neovasculari-
zation, inhibit endothelial cell prolif-
eration, and promote cell apoptosis

[138, 139]

Yoshii J. et al Penicillamine Penicillamine can inhibit angiogen-
esis to suppress the development 
of HCC

[138]

Mi Yang et al Tetravinylpentylamine Tetravinylpentylamine resensitizes 
the tumor cells to radiation in mice-
fed copper

[159]

Saman Khan et al ligand-L ligand-L induces ROS production, 
causing DNA, protein, and lipid dam-
age, and promotes HCC cell death

[173]

Zhou B. et al Copper ionophores Disulfiram (DSF) Cuproptosis DSF/Cu can inhibit the activity 
of PARP1, promote the phospho-
rylation of GSK-3β at the Ser9 site, 
and ultimately lead to the increase 
of PD-L1 expression and stimulate 
cell apoptosis

[68]

Gao F. et al.; Li D. et al Elesclomol Elesclomol can induce cuproptosis 
in HCC cells while causing the loss 
of lipoylated mitochondrial proteins 
and Fe-S cluster protein

[142, 174]

Wachsmann J. et al Ionic [63] CuCl2 hctr1 gene expression is often 
upregulated in HCC cells, where Ionic 
[63]CuCl2 can be used in radiation 
therapy

[52]

Yuan Ji et al SIH-1 SIH-1 releases copper through GSH, 
causing redox imbalance and mito-
chondria-mediated apoptosis 
in HepG2 cells

[175]

Tianxiu Dong et al Nano-copper PFP@PLGA/Cu12Sb4S13 nanocapsule 
(PPCu)

Cuproptosis PPCu can inhibit the RAS/MAPK/
MT-CO1 signaling pathway, normal 
mitochondrial function, and pro-
mote apoptosis of hepatocellular 
carcinoma cells

[176]

Jean-Pascal Piret et al Copper oxide nanoparticles (CuONPs) CuO NPs can stimulate human hepa-
tocellular carcinoma HepG2 cells 
to produce ROS, activate AP-1, as well 
as activate MAPK, ERKs, and JNK/
SAPK signaling pathways

[177]

Siddiqui et al CuONPs can play an antitumor role 
in Hep G2 cells by up-regulating 
caspase-3 gene expression

[47]

Zheng Yang et al Au25(NAMB)18 NCs-Cu2 + @SA/HA 
NHGsC

Au25(NAMB)18 NCs-Cu2 + @SA/
HA NHGsC possesses targeted 
and NIR laser-responsive properties 
and depletes overexpressed GSH 
and H2O2 in the TME. Its imaging 
properties enable image-guided 
diagnosis and treatment of tumors

[178]
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can effectively consume the overexpressed GSH in TME, 
thereby reducing the elimination of hydroxyl radicals 
and amplifying cascade oxidative stress [143]. In addi-
tion, the generated Cu+ utilizes the characteristics of 
TME to trigger nano-catalysis reactions via Fenton-like 
reactions, [146] producing highly toxic hydroxyl radi-
cals and hydrogen peroxide, leading to the outbreak of 
ROS in the TME [147]. High concentrations of ROS 
induce severe oxidative stress thus triggering immuno-
genic cell death. During the immunogenic cell death, 
the antigen-presenting cells and cytotoxic T lympho-
cytes are activated and the systemic anti-tumor immune 
responses are triggered [144]. In addition, to enhance 
the therapeutic effect, enormous materials such as cop-
per nanocrystalline-doped folic acid-based super carbon 
dots, [145] copper-encapsulating magnetic nanoassem-
blies, [148] thermosensitive hydrogel systems, and cop-
per-coordinated nanogenerators were developed [143, 
147]. Although success has been achieved in preclinical 
research, clinical applicability still needs further research.

DC_AC50, another copper-based anticancer com-
pound, acts as a copper-trafficking protein inhibitor, 
inhibiting ATOX1/copper chaperone for superoxide dis-
mutase to enhance ROS-mediated cell death in lung can-
cer H1299 cells, head and neck cancer 212LN cells, and 
breast cancer cells [134]. Preclinical studies in melanoma 
patients have revealed the significant therapeutic poten-
tial of DC_AC50, offering suggestive evidence for cop-
per-targeted therapy in HCC [149].

Combination therapy
Combination with targeted drugs. Lenvatinib, a recep-
tor tyrosine kinase inhibitor that suppresses vascular 
endothelial growth factor receptors,  has already widely 
been put into  clinical applications in advanced HCC. 
However, the therapeutic effects  of Lenvatinib are still 
subject to certain limitations  such  as  the rapid devel-
opment of drug resistance and side effects.  In  2021,  Qi 
Xu and co-workers  constructed a nano platform  where 
Lenvatinib and copper sulfide nanocrystals (Cu2-xS 
NCs)  were co-encapsulated [150]. The evidence from 
this study indicated that the combinatorial treatment 
enhanced  tumoricidal efficacy  and provided additional 
therapeutic benefits. Similarly, surveys conducted by  Li 
Nan et al. in 2023 conclusively suggested that the applica-
tion of a combination of TTM with Lenvatinib presented 
markedly decreased angiogenesis and showed  synergis-
tic antitumor responses [151]. Sorafenib, another widely 
studied receptor tyrosine kinase inhibitor, exhibits a sig-
nificant advantage in suppressing angiogenesis and tumor 
cell proliferation, extending the survival time of advanced 
patients [152]. Mechanistically, sorafenib inhibits mito-
chondrial matrix-related proteases-mediated FDX1 

degradation and directs tumor cells to cuproptosis [153]. 
Wang and colleagues found that disulfiram (a copper 
ionophore mentioned above) combined with sorafenib 
has significant synergistic cytotoxicity against neoplastic 
cells of the liver and shows extremely encouraging anti-
cancer and anti-metastasis efficacy. Collectively, these 
results provide novel insights into combination treatment 
strategies in HCC [154].

Combination with chemotherapy and radiotherapy. Li 
et al. published the findings of the prediction response 
of 10 drugs in hepatocellular carcinoma. Among them, 
they found that patients with a high CRGs score subtype 
were more sensitive to 5-fluorouracil, sunitinib, gem-
citabine, and bleomycin than patients with a low CRGs 
score subtype [155]. Therefore, it is conceivable that the 
combinative treatment of copper compounds and chem-
otherapy drugs may have clinical benefits. This specula-
tion was further exemplified in studies conducted by 
Hassan and coworkers. Their evidence suggested that 
5-fluorouracil in combination with Cu and disulfiram 
presented a more markedly decreased proliferation of 
tumor cells and considerably ameliorated tumor burden 
with a remarkably decreased level of damage to cellular 
structures such as lipids, proteins, and DNA [156]. Like-
wise, Wang et  al. found that disulfiram combined with 
5-fluorouracil showed a remarkably antineoplastic activ-
ity with reduced metastatic and recurrence risk [154]. In 
the same vein, such results have also been consistently 
verified in other tumor models, such as colorectal can-
cer, pancreatic cancer, etc [157]. Clinical studies have 
reported significant elevated copper after radiotherapy 
in tumor patients, suggesting that serum copper levels 
may provide partial evidence for the efficacy of radia-
tion therapy [158]. Copper treatment downregulated the 
expression of copper metabolism MURR1 domain 10 
in animal models endowing cancer cells with increased 
resistance to radiation. Tetravinylpentylamine, a copper 
chelator, significantly decreased the serum level of cop-
per and resensitized the tumor cells to radiation in mice 
fed copper, indicating that Tetravinylpentylamine is a 
copper-dependent selective radiosensitizer [159]. At the 
same time, targeting COMMD10 and related signaling 
may provide novel directions for discovering potential 
biomarkers and therapeutic strategies to alleviate and 
overcome radioresistance.

Combination with other agents. Both cuproptosis and 
ferroptosis are novel types of programmed necrosis. 
Whether there exists a connection between the two has 
aroused the curiosity of many researchers. Wang et  al. 
explored the potential interaction between ferroptosis 
and cuproptosis  in HCC. They found that two ferropto-
sis inducers, sorafenib and erastin, inhibited mitochon-
drial matrix-associated protease-mediated degradation 
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of  FDX1, causing protein lipoylation  and subsequent 
cuproptosis  in hepatocellular carcinoma cells. Greater 
degrees of cell death could be observed when ferroptosis 
inducers and cuproptosis inducers were used simultane-
ously [160]. This discovery provides new insights into our 
further understanding of the role of cuproptosis and fer-
roptosis in the pathophysiological process and potential 
therapeutic targets of HCC.

Scores, models, and biomarkers
Based on the CRGs, the cuproptosis signature, [101] 
cuproptosis-related risk score, [10, 111] cuproptosis-
related gene prognostic index have been developed to 
predict the prognosis and the TME of HCC [112]. The 
risk scores are positively correlated with M0 and M2 
macrophages, while negatively correlated with CD4+ 
T cells, CD8+ T cells, and NK cells, indicating the sup-
pressed immune TME [127]. The higher the CRG score, 
the worse the effect of immunotherapy [161]. Thus, those 
CRG scores can help judge the immune infiltration and 
the effect of immunotherapy. Furthermore, since CRGs 
are closely related to ICGs, targeting these CRGs can 
reverse the suppressive immune microenvironment, and 
improve the efficacy of ICIs and prognosis in HCC treat-
ment [121].

Furthermore, various long non-coding RNAs (lncR-
NAs) can be used as biomarkers in HCC treatment 
(Table  3). The selected lncRNAs are associated with 
the prognosis of HCC, [162] the TME conditions, and 
expressions of key immune checkpoints [163]. Besides, 
the cuproptosis-related lncRNA signature, [164] the 
cuproptosis-related lncRNAs risk-scoring model, [162] 
the lncRNA profile [165] were built to predict the 

immune cell activity and prognosis of immunotherapy in 
HCC, as well as the targeted therapy evaluation.

FDX1 may have promise as a biomarker and therapeu-
tic target based on preliminary studies, which is closely 
related to cancer mutation, immunity, and prognosis, 
[166] and is expected to become a new therapeutic tar-
get for HCC. FDX1 is down-expressed in various cancer 
cells, [166] including HCC, and loss of FDX1 renders 
cancer cells resistant to cuproptosis [16]. Clinical studies 
have shown that HCC patients with high FDX1 expres-
sion exhibited longer survival times [10]. Besides, FDX1 
is highly associated with and directly targeted by elesclo-
mol [167]. DLAT can also serve as a new predictive bio-
marker for HCC prognosis and is closely related to the 
TME and immune system of HCC patients [119]. HCC 
patients with reduced DLAT expression have a better 
prognosis with better OS and disease-specific survival 
[119]. Elesclomol is an anticancer drug that heavily relies 
on its transport of extracellular copper [96]. Through 
elesclomol administration, the FDX1 is activated, thereby 
inducing cuproptosis. Both preclinical and clinical trials 
have confirmed the safety and the cytotoxicity of eles-
clomol to treat cancer, [168–170] which deserves special 
attention in HCC therapy.

Challenges targeting cuproplasia and cuproptosis in HCC
Although copper compounds, nano-copper, and com-
bination therapies seem to be poised to become part of 
standard medical practice, certain clinical trials have not 
yet released their findings, leading to uncertainties and 
inquiries regarding the efficacy of this approach to treat-
ing cancer [NCT00006332]. The lack of detailed experi-
mental information hinders our ability to accurately 

Table 3  The summary of research on cuproptosis-associated RNA biomarkers in HCC

CRlncSig cuproptosis-related lncRNA signature, CRLRSM cuproptosis-related lncRNAs risk-scoring model, CRMs cuproptosis-related miRNAs, HCC hepatocellular 
carcinoma, lncRNA long non-coding RNA

Researchers Biomarkers of RNA Findings and Significance of the Research References

Genhao Zhang et al lncRNAs (AC099329.2, AC138904.1, AC145343.1, 
DNMBP-AS1, DEPDC1-AS1, GIHCG)

Selected six lncRNA linked to cuproptosis and built 
a lncRNA profile to predict the prognosis of immuno-
therapy in HCC

165

Qiongyue Zhang et al lncRNAs (AC003093.1, AC015819.1, AL122035.1, 
AL590705.3, and MKLN1-AS)

Selected five lncRNAs that could be used in HCC immu-
notherapy and targeted therapy evaluation, immune 
cell activity, and function prediction

171

Hongfei Zhu et al lncRNAs (AC005479.2, AC009974.2, GSEC, AC026412.3, 
AC245060.7, AL031985.3, AL158166.1, AL365361.1, 
LINC00426)

Built the CRlncSig to predict the prognosis of immuno-
therapy in HCC

164

Shujia Chen et al lncRNAs (AC019069.1, AC079209.1, AC105020.5, HCG15, 
LINC01515)

Those lncRNAs are associated with TME and expressions 
of key immune checkpoints

163

Lan Luo et al lncRNAs (AC012073.1, AC099850.3, AL031985.3, 
KDM4A-AS1, MIR210HG, MKLN1-AS, and PLBD1AS1)

Built the CRLRSM, and the high expression of these 7 
lncRNAs is associated with poor prognosis in HCC

162

Ze Jin et al miRNAs The first research focused on miRNAs of cuproptosis 
in HCC and the CRMs associated with the prognosis 
of HCC

172
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determine the reasons for potential failures. Challenges 
such as inadequate clinical efficacy, flawed experimen-
tal design and methodologies, safety concerns regard-
ing toxicity and side effects, poor drug-like properties, 
and limited commercial viability, collectively cast doubt 
on the future prospects of these treatments. The robust 
stability and prevalent presence of lncRNAs, as indicated 
in Table  3, suggest their potential utility as dependable 
cancer biomarkers. However, some non-coding RNAs 
lack specificity, as elevated levels may not always indi-
cate a specific cancer type but could potentially be attrib-
uted to other malignancies or inflammatory responses 
triggered by bacterial and viral infections. Furthermore, 
discrepancies in findings across various studies investi-
gating the same non-coding RNA may stem from factors 
such as sample size, statistical approaches, specificity of 
detection techniques, and other methodological con-
siderations. Given the above shortcomings, non-coding 
RNA still faces great challenges in entering the clinical 
translation stage. Establishing standard operating proce-
dures for evaluating non-coding RNA, including sample 
selection, RNA extraction, detection, and standardiza-
tion methods, would facilitate the clinical application of 
non-coding RNA. Researchers have combined genom-
ics, proteomics, metabolomics, etc. with clinical big data, 
artificial intelligence, and machine learning to develop 
various risk scores and prognostic models. These models 
help doctors make better clinical decisions about HCC 
and improve patient prognosis. However, due to the com-
plexity and diversity in the pathogenesis, clinical behav-
iors, biology, pathology, and molecular characteristics of 
HCC subtypes, as well as variations in chemotherapeutic 
sensitivities and prognosis, the ability of prediction mod-
els established for a single subtype is subject to certain 
limitations, so that these models still face the dilemma of 
being difficult for further generalization.  Building more 
comprehensive, more sensitive, and algorithmically bet-
ter models remains a key challenge. Establishing closer 
connections between these models and immune infiltra-
tion may provide some inspiration for clinical treatment. 
Furthermore, there is an urgent need for a better under-
standing of the cross-talk between cuproplasia, cuprop-
tosis, and other forms of cell death, such as ferroptosis. 
This insight might reveal a potential correlation not only 
for related cell and animal experiments assessing the can-
didate contribution of crosstalk between different types 
of cell death to certain diseases, but, more importantly, 
also in the coming time clinical research evaluating the 
efficacy of potential drugs attempting to provide more 
practical guidance for the combination therapy and clini-
cal decision-making of diseases linked with cuproplasia 
and cuproptosis (e.g., cancer, neurodegenerative diseases, 
and obesity, as well as Wilson’s disease).

Concluding remarks
HCC presents a significant global health challenge, 
exerting considerable strain on healthcare systems 
worldwide. An in-depth analysis of cuproplasia and 
cuproptosis mechanisms within the TME of HCC 
unveils their opposing nature and their impact on cop-
per regulation within the TME. Cuproplasia fosters 
TME formation, angiogenesis, and metastasis, whereas 
cuproptosis may alleviate mitochondrial dysfunction 
and hypoxic conditions in the TME. Therefore, inhib-
iting cuproplasia and enhancing cuproptosis in HCC 
are essential for achieving therapeutic efficacy in HCC. 
These areas necessitate further investigation and offer 
promising research prospects.
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