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Abstract
Background  The immune checkpoint targeting is nowadays an integral part of cancer therapies. However, only a 
minority of patients experience long-term benefits. Thus, the identification of predictive biomarkers contributing to 
therapy response is urgently needed.

Methods  Here, we analyzed different immune and tumor specific expression and secretion profiles in the peripheral 
blood and tumor samples of 50 breast cancer patients by multicolor flow cytometry and bead-based immunoassays 
at the time of diagnosis. Due to individual phenotype variations, we quantitatively scored 25 expressed and secreted 
immune-associated (e.g., LAG-3, PD-1, TIM-3, CD27) and tumor relevant markers (e.g., PD-L1, CD44, MHC-I, MHC-II) 
in immune checkpoint-treated triple negative breast cancer patients based on the current literature. The calculated 
score divided the patients into individuals with predicted pCR (total score of > 0) or predicted residual disease (total 
score of ≤ 0). At the end of the neoadjuvant therapy, the truly achieved pathological complete response (pCR; end of 
observation) was determined.

Results  The calculated score was 79% in accordance with the achieved pCR at the time of surgery. Moreover, 
the sensitivity was 83.3%, the specificity 76.9%, the positive predictive value 62.5%, and the negative predictive 
value 90.9%. In addition, we identified a correlation of PD-1 and LAG-3 expression between tumor-associated and 
peripheral immune cells, which was independent of the subtype. Overall, PD-1 was the most frequently expressed 
checkpoint. However, in a number of patient-derived tumors, additional checkpoints as LAG-3 and TIM-3 were 
substantially (co-)expressed, which potentially compromises anti-PD-(L)1 mono-therapy.

Conclusions  This study represents a proof-of-principle to identify potential checkpoint therapy responders in 
advance at the time of diagnosis. The work was based on a scoring derived from a multiplexed marker profiling. 
However, larger patient cohorts need to be prospectively evaluated for further validation.
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Background
Breast cancer (BC) is the second most common cause 
of cancer-associated death in women [1], even though, 
the prognosis considerably varies for hormone recep-
tor (HR+), human epidermal growth factor receptor 2 
(HER2+; with or without HR expression) and HER2-/
HR- diseases, the latter classified as triple-negative breast 
cancer (TNBC). In early stage TNBC neoadjuvant che-
motherapy (NACT) proved to be a promising strategy but 
meanwhile immune checkpoint inhibitor therapy (ICI) in 
combination with chemotherapy is a partially successful 
approach to treat early [2] and metastatic TNBC patients 
[3, 4]. In 2020, the anti-PD-1 (programmed cell death 1) 
antibody pembrolizumab (applied in combination with 
chemotherapy) was authorized for the treatment of met-
astatic TNBC. This approval was based on the improved 
progression free survival (PFS) of patients whose tumors 
express PD-L1 (programmed cell death ligand 1) com-
bined positive score (CPS) ≥ 10 [5]. Based on the results 
of the KEYNOTE-522 trial, the use of pembrolizumab (in 
combination with chemotherapy) has also been approved 
by the Food and Drug Agency (FDA) and the European 
Medicines Agency (EMA) for the neoadjuvant treatment 
of high-risk, early-stage TNBC patients, independent of 
the PD-L1 status [6].

To date, PD-L1 expression on immuno-histochem-
istry is currently the only approved biomarker to select 
patients with TNBC for immunotherapy. However, its 
predictive value is uncertain and certainly limited as well 
as irrelevant in the early-stage setting. There is also the 
issue of intra- and inter-tumor PD-1/PD-L1 heterogene-
ity and the existence of various diagnostic assays. More 
specifically, the inhibition of the PD-1/PD-L1 axis is not 
always beneficial for patients with PD-L1+ tumors, which 
might be due to the co-expression of additional check-
point molecules. Besides PD-1, the lymphocyte activa-
tion gene (LAG-3) is another transmembrane receptor, 
which is frequently upregulated on the surface of acti-
vated T cells. Co-expression of both receptors represents 
an enhanced exhausted phenotype, hence dual targeting 
might be an option to overcome ICI resistance [7]. The 
binding partner of LAG-3 is the major histocompatibility 
complex II (MHC-II) but also other ligands such as galec-
tin-3 or the T cell antigen receptor (TCR)–CD3 complex. 
The involvement of LAG-3 mediates inhibitory activity, 
however, the signaling pathway is not completely under-
stood [8].

The T cell immunoglobulin and mucin domain-3 (TIM-
3) is expressed on IFN-γ-producing and intratumoral T 
cells, regulatory T cells (Tregs), and antigen-presenting 

cells (APCs) [10]. The interaction with one of its ligands, 
namely galectin-9 (Gal-9), has been shown to induce 
immune cell death, promotes tumor growth, and sup-
presses adaptive immune responses [11]. Other poten-
tially relevant ligands are high mobility group protein 
B1 (HMGB1), carcinoembryonic antigen-related cell 
adhesion molecule 1 (CEACAM1), and TIM-3, which 
has been described as markers for exhausted and dys-
functional CD8+ T cell populations and natural killer 
(NK) cells associated to solid and hematological malig-
nant diseases [12]. Although TIM-3 or LAG-3 expres-
sions are associated with an exhaustion phenotype their 
expression has been associated with an improved out-
come in different cancer subtypes including BC [11, 13, 
14]. Targeting of TIM-3 to prevent or reverse exhaustion 
by specific antibodies is efficient in triggering anti-tumor 
responses and several trials evaluating mono- or combi-
nation therapies are ongoing [15]. 

Different surface molecules, including checkpoints, can 
undergo alternative splicing or cleavage by a disinteg-
rin and metalloproteinase (ADAM10 or ADAM17) that 
causes the release of soluble variants [16]. However, the 
function and (clinical) importance of soluble factors are 
poorly understood. Nevertheless, there is some evidence 
for ADAM molecules to be associated with prognosis or 
ICI prediction. For instance, soluble CD27, which is asso-
ciated with T cell activation and proliferation [17], has 
been defined as a negative prognostic factor in solid can-
cer patients undergoing ICI [18].

The identification of prognostic but more importantly 
predictive biomarkers is an essential step towards preci-
sion medicine and personalized treatment. Therefore, we 
investigated potentially highly relevant cell-associated 
and secreted immune profiles in BC tissue and corre-
sponding blood samples. Finally, based on the literature, 
we ranked the analyzed soluble and membrane-based 
parameters at the time of diagnosis in TNBC patients 
and correlated the thereby calculated predictive score to 
the clinical course of the disease.

Methods
Patient information, treatment and sample preparation
BC biopsy and matched plasma samples from primary 
tumors of early stage BC patients (details are summa-
rized in Table 1) were collected from March 2023 to July 
2024 (before treatment). Single cell suspension was gen-
erated by cutting the tissue into small pieces and passing 
it through a 40  μm cell strainer (Falcon, Thermo Fisher 
Scientific, USA). Upon centrifugation (300 × g for five 
minutes at 4  °C) supernatant was discarded and cells 
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were eluated in 1% FBS, 0.01% NaN3 and Dulbecco´s 
phosphate buffered saline (DPBS) buffer (Gibco, Thermo 
Fisher Scientific, USA). 100 µl of peripheral EDTA blood 
samples were lysed using FACS lysing solution (BD Bio-
sciences, USA, Cat. No. 349202) and washed twice with 
1% FBS, 0.01% NaN3 and DPBS buffer (300 × g for five 
minutes at 4  °C). The study included TNBC patients 
based on their nodal status (positive or negative) and/or 
tumor size greater than 2  cm and received neoadjuvant 
chemotherapy and pembrolizumab following the proto-
col of the KEYNOTE-522 trial [6], The pathologic com-
plete response (pCR) or non-pCR was defined by the 
examination of residual tumor cells in the resected breast 
tissue by the pathologists (end of observation).

Flow cytometry
Tumor single cells and blood samples were stained with 
fluorochrome labeled antibodies (clone and distribu-
tor information as well as panel design are summarized 

in Suppl. Table 1). Samples were incubated for 30  min 
at 4  °C and subsequently washed twice (300 x g, 5 min, 
4  °C) with DPBS containing 1% FBS and 0.01% NaN3. 
Appropriate immunoglobulin antibodies were used as 
isotype controls. Protein expression profiles of tumor 
and immune cells were analyzed by flow cytometry with 
a FACS-Canto-II (BD Biosciences, San Jose, CA, USA), 
which was run by the Diva software Ver. 7.0 (BD Biosci-
ences, San Jose, CA, USA). Results were analyzed using 
the FlowJo software v10.8 (BD Biosciences, San Jose, CA, 
USA).

Soluble factor analyzes by legendplex™ bead-based 
immunoassay
Plasma was collected via centrifugation of periph-
eral EDTA blood (2000xg for ten minutes at 4  °C) and 
stored at -80 °C. Multiplex assay procedure of LEGEND-
plex™ 12-plex HU Immune Checkpoint Panel 1 (Cat No. 
740867, analyzed molecules: sCD25, 4-1BB, sCD27, B7.2, 
free active TGF-ß1, sCTLA-4, sPD-L1, sPD-L2, sPD-
1, sTIM-3, sLAG-3, and sGalectin-9) was performed 
according to manufacturer´s protocol. Briefly, human 
plasma samples were pre-diluted and were incubated 
with microbeads (800 rpm; 2 h, room temperature (RT)), 
and after several washing steps incubated with detection 
antibody (800 rpm, 1 h, RT) followed by Streptavidin-PE 
(SA-PE) incubation (800  rpm, 30  min, RT). Data were 
analyzed with the LEGENDplex™ Data Analysis Software 
Suite.

Literature based TNBC patient scoring
Based on the literature, all analyzed markers were catego-
rized as beneficial or unfavorable (Table 2) and samples 
with values above the calculated mean in the analyzed 
TNBC cohort were allocated to the value of + 2 or -2, 
respectively. Each marker was equally weighted because 
at the current state there is no reasonable evidence for 
a different weighting. Scores occurring on both T cell 
subsets (CD4 or CD8) were divided into values of + 1 
or -1. Two TNBC patients with multiple missing bio-
marker information (e.g., small tumor tissue, no blood 
sample) and two patients without ICI treatment or addi-
tional (trastuzumab) treatment due to the co-existence 
of another tumor subtype were excluded. All scores for 
the individual markers were summed up to a final score 
and results < 0 was considered to predict residual dis-
ease (pre-RD) and ≥ 0 were considered to predict pCR 
(pre-pCR).

Statistical analyses
The results are shown as mean and standard devia-
tion (SD), as described in the figure legends. Statistical 
analyses were performed using the GraphPad PRISM 8. 
We used a significance level of p ≤ 0.05 in the one-way 

Table 1  Characteristics of 50 breast cancer tumors were 
analyzed in this study. *Two patients with two different subtype 
tumors; **two patients (three tumors) without information 
about TNM, G status; ***HER2: 2+ FISH (fluorescence in situ 
hybridization) negative; TNBC = triple negative breast cancer; 
HER2 = humane epithelial growth receptor 2 positive breast 
cancer; yr = year; ER = estrogen receptor; PR = progesterone 
receptor; Luminal B (estrogen receptors (ER+) and/or 
progesterone receptors (PR+)) with ki67 > 14%)
Variable TNBC *** HER2+ Luminal B Total (BC)

(n = 23) (n = 6) (n = 21) (n = 50)*
Mean age – (yr) 53 53.7 50 52.1
Sex - no. (%)
  Male 0 0 0 0
  Female 23 (100) 6 (100) 21 (100) 48 (100)*
N stage positive (%) 10 (45.5) ** 3 (50.0) 10 (52.6)** 23 (45.1)**
M0 / Mx (%) 22 (100) ** 6 (100) 19 (100)** 45 (100)**
T stage (%)
  T1 3 (13.6) ** 0 (0) 3 (15.8)** 6 (13.3)**
  T2 18 (81.8) ** 5 (83.3) 11 (57.9)** 33 (73.3)**
  T3 1 (4.5) ** 1 (16.7) 3 (15.8)** 5 (11.1)**
  T4 0 (0) 0 (0) 2 (10.5)** 2 (4.4)**
Grade (%)
  G2 13 (59,1) ** 5 (83.3) 12 (63.2) ** 29 (64.4)**
  G3 9 (40.9) ** 1 (16.7) 7 (36.8) ** 17 (37.8)**
Clinico-pathologi-
cal markers
  ER positive > 2 (%) 0 (0) 0 (0) 21 (100) 21 (43.8)
  PR positive > 1 (%) 0 (0) 0 (0) 20 (95.2) 20 (41.7)
  HER2neu Dako: 
0 (%)

16 (69.6) 0 (0) 5 (23.1) 21 (43.8)

  HER2neu Dako: 
1+ (%)

6 (26.1) 0 (0) 6 (28.6) 12 (25.0)

  HER2neu Dako: 
2+/3+ (%)

1 (4.3) *** 6 (100) 10 (43.5) 15 (31.3)

  Ki67 (%) 42.6 30.6 33.1 37.2
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ANOVA with Tukey’s multiple comparisons test, two-
way ANOVA, and paired parametric t-test, or if data 
were non-parametric Kruskal-Wallis test with Dunn´s 
multiple comparisons test. Correlations were determined 
using a two-tailed Pearson correlation test. Applied test 
information is included in the figure legend and asterisks 
denote statistical significance (* p ≤ 0.05, ** p ≤ 0.01, *** 
p ≤ 0.001; **** p ≤ 0.0001).

Ethics statement
Patient-derived tumor samples and peripheral blood 
samples were taken with approval from the ethics com-
mittee of the University of Regensburg (BC samples and 
blood: 22-3151-101, Changes and adjustments – blood: 

22-3151_1-101). All patients have signed a written 
informed consent.

Results
Individual MHC-I, -II, CD24, CD44, and PD-L1 expression 
profiles detected in BC tissues
Tumor expression profiles considering BC subtypes were 
investigated by flow cytometry. Epithelial cell adhesion 
molecule (EpCAM) was used to identify tumor cells in 
BC samples. In all tested tumor samples, the expression 
profile of CD24, PD-L1, and MHC-I & II showed a broad 
spectrum of expression in the range between 0->90% 
in all tested BC subentities (Fig. 1). The CD24 (Fig. 1A) 
and CD44 positivity (Fig. 1B) and thus CD44/CD24 ratio 
(Fig. 1C) varied especially in TNBC whereas Luminal B 

Table 2  Exemplary literature for all markers included in the predictive score model. Negatively associated markers are typed in red 
and positive categorized markers in green
Biomarker Prognostic/predictive value and references
mMHC-I • MHC-I loss associated with a lack of response to immunotherapy [19, 20]
TILs • Pos. prognostic factor in TNBC [21, 22]

• Predictive in atezolizumab [23] and pembrolizumab [24] treated mTNBC
mPD-1 • Pos. prognostic factor for survival in many cancer subtypes including BC [25]
mCD137 • Costimulatory receptor expressed on activated T lymphocytes, dendritic cells (DCs), and NK cells [26]

• Predictive for pembrolizumab treated HNSCC patients [28]
CM/EM T cells • High numbers of CD45RO+ memory T cells within different primary malignancies [29] including TNBC [30] are associ-

ated with favourable clinical outcome.
CD8 in TIL • Higher CD3+ infiltration [31] as well as CD8+ infiltration [32] associated with increased pCR in BC patients receiving NAT

• Positive predictive for immunotherapy response in different cancers [33–35] including BC [35, 36]
• Predictive for improved progression free survival (PFS) and OS after treatment with atezolizumab in TNBC [37]

mPD-L1 on myeloid cells • Associated with good clinical outcome in BC [38, 40]
• Predictive for response to neoadjuvant Durvalumab treatment in TNBC [41]

LAG-3+ TIL • Associated with better OS in different types of cancers [14] also in TNBC [13, 42] and ER- [42, 43]
TIM-3+ TIL • Independent favorable prognostic factor in BC [11, 44–46]

• Increased levels associated with improved survival in BC treated with chemotherapy [47]
sLAG-3 • Prognostic (OS, PFS) in mHR+ [48]

• High concentration before ICI in solid cancer significantly impaired PFS and OS [51]
MHC II • High MHC-II expression associated with positive responses to IC therapy in melanoma [52, 53] [54] and in HER2- BC [55].

• Associated with an improved prognosis in TNBC [56–59]
CD24 • Associated with poor prognosis, tumor size and lymph node positivity in BC [60]
mPD-L1 (tumoral) • Associated with a worse OS in BC [61]
sPD-1 • Associated with advanced disease and worse outcome [62]

• High levels have been associated with poor cytotoxic therapy response in TNBC [63]
sPD-L1 • More likely to develop progressive disease upon ICI treatment in different solid tumors [64], specifically in lung [65] and 

melanoma patients [66, 67].
sPD-L2 • Higher sPD-L2 levels in patients with Ki67 > 30% and in tumor grade III-IV BC patients [68].
sCD25 • Negative prognostic marker in HNSCC [70, 71], lung [72], and multiple myeloma [73] patients.

• Lack of long term benefit of ICI in lung [72] and association with resistance to CTLA-4 blockade in melanoma [74]
sCD27 • Negative prognostic factor associated with reduced survival in lung cancer [75], HNSCC [70], and diffuse large B-cell 

lymphoma [76]
• Negative prognostic marker in solid cancer patients undergoing ICI [51]

sTIM-3 • Associated with advanced NSCLC disease [77] or increased invasion [78], and anti-PD-1 resistance [79]
• Low sTIM-3 level correlated to increased response to anti-PD-1 treatment [80] in NSCLC patients

Gal-9 • Soluble immunosuppressive agents in various malignancies [81, 82].
CD33 in PB • High pre-treatment myeloid cells were associated with lower pathologic complete response (pCR) rates to neoadj. 

Chemotherapy in TNBC [83].
PD-L1 on B cells • PD-L1 expression on B cells pursue significant immunosuppressive effect in various tumors [86]
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and HER2+ tumors showed rather low CD44 expression. 
In the context of MHC-I, the majority of tumor cells 
expressed this antigen-presenting receptor except for 
three TNBC samples with expression levels below <40% 
(Fig. 1D). MHC-II expression varied in all tested BC sam-
ples in a range of 7 to 97% (Fig. 1E). The lowest average of 
PD-L1 expression was found in TNBC (Fig. 1F).

T cells are the main immune cell population among tumor-
infiltrating lymphocytes
The average of immune cell infiltration in the tumor tis-
sue in TNBC and HER2+ analyzed by flow cytometry was 
~ 20% and the lowest infiltration was seen in Luminal 

B tumors (Fig.  2A). The majority of tumor infiltrating 
immune cells belong to the T cell subsets in all tested 
cancer subtypes (Fig. 2B). In the peripheral blood (PB) of 
TNBC and Luminal B patients the ratio of CD4/CD8 was 
significantly increased compared to the healthy donor 
samples and the tumor tissue (Fig.  2C). Overall, there 
were no significant differences in immune cell distribu-
tion between the healthy donor and patient blood and in 
between tumor entities detectable.  The mean percentage 
of CD137 expression on CD4 or CD8 T cells was ~ 10% 
without significant differences between blood and tumor 
or between blood from healthy donors and patients 
(Suppl. Figure 1 A&B). Only low concentration of soluble 

Fig. 1  Tumor cell characterization in BC subtypes (TNBC, Luminal B, HER2+). EpCAM+ tumor cells were analyzed by flow cytometry. The percentage of 
CD24+ (A) or CD44+ tumor cells (B) and the CD44/CD24 ratio (C) of mean fluorescence intensities (MFI) are displayed. Graphs represent the proportion 
of MHC-I (D), MHC-II (E) and PD-L1 (F) among EpCAM+ tumor cells. Each symbol represents a single donor; Data are given as mean ± SD (no significnt 
differences were detected by Tukey’s multiple comparisons test). Red symbols represent Luminal B breast cancer patients with HER2 over-expression
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CD137 was detected (Suppl. Figure 1C). However, 
the expression of CD137 correlated significantly with 
LAG-3 (p < 0.0001) and TIM-3 (p = 0.037) on CD4+ T 
cells. CD137 on CD8+ T cells showed a correlation to the 
expression of PD-1 (p = 0.0034) and TIM-3 (p < 0.0001; 
Suppl. Figure 1D). Further phenotyping of tumor invad-
ing T cells revealed a central memory (CM) and end 
effector memory (EM) phenotype (Fig. 3A) in all entities. 
This cell fraction was significantly higher than in the PB 
of patients and healthy donors (HD) in TNBC and Lumi-
nal B patients (Fig.  3B). In HER2+ blood samples, the 
proportion of EM phenotype especially on CD8+ T cells 
was higher compared to other entities and therefore no 
significant differences between blood and tumor samples 
were measurable. Independent of subtypes, no significant 

changes in the blood of healthy donors or patients were 
detectable (Fig. 3B). 

Increased checkpoint expression on tumor-
infiltratinglymphocytes 
In TNBC samples, the expression of PD-1 and TIM-3 on 
CD4+ and CD8+ T cells was significantly higher in the 
tumor tissue compared to the peripheral blood (Fig. 4A). 
Interestingly, in the blood samples of three healthy 
donors and two TNBC patients, a pronounced LAG-3 
expression was detected (Fig.  4A). However, the mean 
percentage and the maximum of PD-1 expression on 
CD4+ and CD8+ T cells were higher compared to LAG-3 
and TIM-3 (Fig. 4B).

Comparison between BC subtypes revealed no signifi-
cant differences in checkpoint expression on CD4+ or 

Fig. 2  Flow cytometric analysis of immune cells in blood of healthy donors and BC patient samples. (A) Immune cell infiltration in the tumor tissue are 
displayed. (B) Mean proportions of T lymphocytes (grey), B lymphocytes (orange), myeloid cells (green), NK cells (blue), NK-T cells (red) in blood and tumor 
samples are displayed. (C) CD4+ and CD8+ T cell proportion of CD3+ T cells are given for TNBC, Luminal B, HER2+ in comparison to healthy donors. Data 
are shown as mean +/-SD and p-values were calculated by Kruskal-Wallis-test (Dunn´s multiple comparisons test) or one-way ANOVA (Tukey´s multiple 
comparisons test) based on parametric pretesting; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001; HD = peripheral blood of healthy donors; PB = pa-
tient derived peripheral blood; PT = patient derived tumor
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Fig. 3  T cell maturation status in the blood and tumor tumor tissue were quantified. (A) Gating strategy using CD45RA and CD27 expression are shown 
to determine effector memory (EM) (CD45RA-, CD27-), central memory (CM) (CD45RA-, CD27+), naïve (CD45RA+, CD27+) and terminal differentiated EM 
(TEMRA; CD45RA+, CD27-) on CD4+ and CD8+ T cells. (B). Maturation of CD4 (second row) and CD8 (third row) T cells were analyzed by flow cytometry in 
the peripheral blood of healthy donors (HD) and blood and tumor of TNBC, HER2 and Luminal B patients. Data are given as mean ± SD and significances 
calculated using Tukey’s multiple comparisons test. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001
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CD8+ T cells (Fig. 4B). A significantly increased propor-
tion of tumor infiltrating CD4+ T cells in TNBC (mean 
3.16 +/- 4.16 SD; p = 0.05) and HER2+ (mean 2.03 +/- 0.99 
SD; p = 0.018) patients showed a LAG-3/PD-1 co-expres-
sion compared to Luminal B patients (Fig.  4C). Even 
though the overall expression of PD-1 was low in the 
PB of patients, there was a correlation between expres-
sion in the peripheral blood and the tumor tissue (Suppl. 
Figure 2 A). A significant correlation was also detectable 
with respect to LAG-3 expression in the tumor and the 
PB (Suppl. Figure  2  A). The analysis of TIM-3 did not 
reveal such a correlation (data not shown). An additional 
correlation was found between PD-1 and TIM-3 expres-
sion on CD4+ and CD8+ T cells (Suppl. Figure 2B).

High expression of PD-L1 detectable on myeloid and NK-T 
cells in the tumor tissue
Intratumoral CD33+ myeloid cells expressed high lev-
els of PD-L1 (average ~ 50%) but only a minority of cells 
indicated a PD-1 expression (Fig. 5A). Larger fractions of 
PD-L1 (but not PD-1) expression on B cells were detected 
in tumor tissues of some patients (Fig.  5B). PD-L1 and 
PD-1 expression on NK cells was low (Fig. 5C), whereas 
NK-T cells showed a wide range (0–94%) of PD-L1 as 
well as PD-1 (1-100%) appearance (Fig.  5D). No signifi-
cant differences between BC subtypes were found.

Broad range of soluble factors in individual BC patients
Overall, a diverse concentration of soluble factors was 
found in the plasma but without significant differ-
ences to healthy controls (Fig. 6A). The concentration of 
sCD27, sTIM-3, Gal-9, and sLAG-3 varied remarkably 

Fig. 4  Checkpoint expression on T cells in the peripheral blood and tumor tissue. (A) Immune checkpoint marker (LAG-3, PD-1, TIM-3) expression was 
analyzed by flow cytometry in the peripheral blood of healthy donors and blood and tumor of TNBC patients. (B) Immune checkpoint marker (LAG-3, 
PD-1, TIM-3) expression (B) and co-expression (C) of BC patients (TNBC, Luminal B, HER2+) on CD4+ and CD8+ T cells are displayed. Data are shown as 
mean +/-SD and p-values were calculated by Kruskal-Wallis-test (Dunn´s multiple comparisons test); * p ≤ 0.05; **** p ≤ 0.0001; red symbols represent 
Luminal B BC patients with HER2 expression. HD = peripheral blood of healthy donors; PB = patient derived peripheral blood; PT = patient derived tumor
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between individuals. Interestingly, in some plasma 
samples derived from the so-called low immunogenic 
HER2- Luminal B tumors, high concentrations of sTIM-
3, sPD-1, sPD-L1, and sLAG3 were found. In contrast to 
PD-L2 and Galectine-9 only low concentrations of PD-1 
and PD-L1 were counted. We also detected a profound 
correlation between sLAG-3 and sPD-1 and a moderate 
correlation between sTIM-3 and sPD-1 as well as Gal-9 
and its binding partner sTIM-3 (Fig. 6B). There were no 
additional correlation detectable between the analyzed 
soluble checkpoint molecules. Furthermore, the soluble 
PD-L1 levels correlated with the frequency of PD-L1 
expression on tumor cells (Fig. 6C).

Scoring of membrane bound and soluble factors allowed 
the prediction of response to immunotherapy in TNBC 
patients
Due to the wide range of detected expression and secre-
tion profiles, the analyzed markers were scored positive 
(+ 2 points) and negative (-2 points) based on the litera-
ture (Table 2). The total score summed up to the “predic-
tive score” (Table 3), which we assessed for each patient 
(Suppl. Table 2). Next we assigned patients with values 
below 0 to the group with prediction for residual disease 
(pre-RD) and values ≥ 0 to the group with prediction for 
pCR (pre-pCR) Non-responders were not observed in 
this study. These results were assigned to the primary 
endpoint data (pCR, non-pCR at the time point of sur-
gery; Table 3). In this small group of patients, it accurately 

predicted treatment outcomes for fifteen patients but 
was incorrect for four patients, resulting in an accuracy 
of 79%. This study revealed a sensitivity of 83.3%, a speci-
ficity of 76.9%, a positive predictive value of 62.5%, and 
a negative predictive value of 90.9% for therapy response 
prediction.

Notably, focusing on the TIL rate only did not reveal 
(potential) responders. More specifically, seven patients 
had higher TIL levels (Suppl. Table 2) but only three 
achieved pCR at the time of surgery (Table 3). Addition-
ally, three patients with pCR did not exhibit increased 
immune cell infiltration.

Discussion
ICIs are promising and in some instances, powerful 
therapeutic options for the treatment of different cancer 
subtypes with a still growing number of ongoing clinical 
trials. TNBC is considered to represent an immunogenic 
BC subtype, mainly due to a greater tumor mutational 
burden (TMB) and a pronounced immune cell infiltra-
tion, which assures pronounced susceptibility to immu-
notherapeutics. However, only a subgroup of TNBC 
patients respond to ICI therapy [87]. Thus, the identifica-
tion of predictive biomarkers for single and multiplexed 
immune checkpoint treatments is urgently needed. Here, 
we quantitatively determined soluble and membrane-
located markers at the time of BC diagnosis in differ-
ent BC subtypes. Markers evaluated in TNBC patients, 
who were eligible for a checkpoint treatment, were rated 

Fig. 5  Flow cytometry analysis of PD-1 and PD-L1 expression on immune cell subsets of BC patients. Percentage of PD-1 and PD-L1 expression on intra-
tumoral myeloid cells (A) and B cells (B), NK (C), and NKT (D) cells are displayed. Data are given as mean ± SD (no significant differences were detected by 
Tukey’s multiple comparisons test). Red symbols represent Luminal B breast cancer patients with HER2 over-expression
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based on the literature and summarized to a predictive 
score (≥ 0 = “complete responder” with predicted pCR, < 
0 = “partial responder” with predicted residual disease). 
At the end of neoadjuvant treatment, pCR was deter-
mined and revealed 79% accuracy of prediction.

Considering all tested BCs, regardless of subtypes, 
PD-1 was the most dominant checkpoint on T cells, 
which confirms its potency to serve as checkpoint ther-
apy. Limited quantitative data are available compar-
ing the expression profile of PD-1, LAG-3, and TIM-3 
in early BC. Mollavelioglu and colleagues analyzed BC 
tumor tissues by a quantitative and correlative flow cyto-
metric approach. They found co-expression of PD-1, 
LAG-3, TIM-3, LAG-3 and CTLA-4 on TILs in early 
stage BC samples and increased presence of LAG-3, 
PD-1, and TIGIT on CD8+ TIL in T2 tumors [88]. How-
ever, the majority of samples in their study (n = 26) was 

attributed to the luminal group and only three TNBC 
and three HER2+ were included. We also identified vary-
ing levels of PD-1 expressions that indicates the need for 
individualized alternative (checkpoint) therapies, espe-
cially in those patients with increased co-expression of 
LAG-3 and TIM-3. Interestingly, we detected not only 
the correlation between expressed but also between dif-
ferent secreted checkpoint molecules, which confirms 
co-occurrence and the potential of dual targeting. Co-
expression of checkpoint molecules has been described 
before, e.g., in TNBC patients [7, 88]. More specifically, 
Du and colleagues reported enhanced anti-tumor effi-
ciency in a TNBC based mouse model treated with 
LAG3 and PD-1 dual blockade [7]. Based on the RELA-
TIVITY-047 trial, first combination strategies for PD-1 
(nivolumab) and LAG-3 (relatlimab) targeting have been 
approved by the FDA for the treatment of unresectable 

Fig. 6  Soluble checkpoints and regulatory factors in plasma of BC patients compared to healthy controls. (A) Concentration of soluble factors (sCD27, 
sCD25) and soluble checkpoint molecules (sTIM-3, Galectin-9, sPD-1, sPD-L1 & 2, sLAG-3) were analyzed in plasma of cancer patients and healthy do-
nors. Red symbols represent Luminal B breast cancer patients with HER2 over-expression. Data are given as mean ± SD (no significant differences were 
detected by one-way-ANOVA (Tukey’s multiple comparisons test). (B) Correlations of sLAG-3 and sTIM-3 to sPD-1 and between Galectin-9 and sTIM-3 
of breast cancer patients (each entity represented by different color) are displayed. (C) Correlation of PD-L1 expression and secretion were determined. 
Correlation were determined using the two-tailed Pearson correlation test and p-values are indicated in each graph
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or metastatic melanoma. The median PFS of patients 
treated with combination was doubled compared to the 
PFS of patients who underwent nivolumab monotherapy 
only [9]. However, further evaluation of the potential 
benefit in patients is needed. Soluble checkpoint vari-
ants might also affect the efficiency of non-combined ICI. 
Therefore, we included the soluble variants in our scoring 
model. Some of the soluble factors have been associated 
to prognosis and prediction in different cancers and are 
summarized in Table  2. For instance, sCD27 is a nega-
tive prognostic factor in solid cancer patients undergo-
ing ICI treatment [51]. As reported before, soluble PD-1 
concentration was low and only HER2 negative Luminal 
B patients showed slightly enhanced levels in the plasma. 
It has been postulated that high sPD-1 levels before treat-
ment are associated with advanced disease and worse 
outcome, whereas increasing sPD-1 levels upon treat-
ment (including checkpoint therapy) have been linked 
to improved PFS and OS [62]. Several publication report 
on divergent concentration of soluble markers in the PB 
of cancer patients compared to samples derived from 
healthy donors, even though the reports are inconsistent. 
However, in agreement with our data, marker concentra-
tions of sPD-L1 in TNBC [63] or sPD-1 and sLAG-3 in 
early BC patients of all subtypes [89] appeared compara-
ble to healthy donors without significant differences. Just 
recently, the impact of soluble factors in various cancers 

was summarized in an article, emphasizing that further 
investigation is needed to better understand their role in 
diagnosis, prognosis, and therapy response [16].

Interestingly, in the HR+ subtype, HER2 status divided 
patients into two clusters with noticeably higher concen-
tration of sTIM-3, sPD-1, sLAG3, and sPD-L1 in HER2-
negative tumors. This indicates an immune suppressive 
situation in HR+HER2- rather than a low immunogenic 
disease. Accordingly, an increased infiltration of tumor 
associated macrophages and the presence of non-acti-
vated cancer associated fibroblasts in HR+ tumors have 
been observed, which represents an immunosuppres-
sive environment as well [90]. In line with this assump-
tion, clinical trials done on high-risk ER+ BC patients 
with combined NACT and ICI achieved significantly 
improved pCR rates compared to the control arm [91].

Currently, PD-L1 assessed by immunohistochemistry 
(IHC) is the only validated predictive marker for ICIs in 
TNBC. In addition, in TNBC PD-L1 expression (> 1% 
on immune cells or > 10% combined positive score) is 
predictive for ICI response in the advanced [3, 5] but 
not in early diseases [2, 6]. Other predictors for therapy 
responses are microsatellite instability [92] and the pres-
ence of high TMB [93–95] but only a small percentage of 
TNBC could be rated based on these categories [96].

Increased infiltration of TILs have also been associ-
ated with an increased response rate to NACT [21] and 

Table 3  Scoring of 19 TNBC patients (time point of diagnosis) based on membrane bound and secreted markers (Suppl. Table 1) 
correlated with the primary clinical endpoint (pathological complete response (pCR) or non-pCR; time point of surgery). Prediction 
for pCR (pre-pCR; total score ≥ 0); Prediction for residual disease (pre-RD); total score < 0); match = predicted outcome based on the 
score is in accordance with the outcome determined by the pathologist; mismatch = predicted outcome based on the score is not in 
accordance with pathological outcome (italic)
# of TNBC patient beneficial factor 

score
detrimental factor 
score

total score prediction of score pathological outcome 
data

match/ 
mis-
match

#1 19 -10 9 pre-pCR pCR, tumor free match
#2 7 -6 1 pre-pCR pCR, tumor free match
#3 4 -6 -2 pre-RD non-pCR match
#4 21 -6 15 pre-pCR pCR, tumor free match
#5 4 -10 -6 pre-RD non-pCR match
#6 6 -10 -4 pre-RD non-pCR match
#7 6 -6 0 pre-pCR pCR, tumor free match
#8 8 -4 4 pre-pCR non-pCR mismatch
#9 1 -8 -7 pre-RD non-pCR match
#10 3 -14 -11 pre-RD non-pCR match
#11 12 -10 2 pre-pCR non-pCR mismatch
#12 17 -10 7 pre-pCR non-pCR mismatch
#13 3 -4 -1 pre-RD non-pCR match
#14 5 -8 -3 pre-RD non-pCR match
#15 12 -14 -2 pre-RD pCR, tumor free mismatch
#16 3 0 3 pre-pCR pCR, tumor free match
#17 1 -8 -7 pre-RD non-pCR match
#18 4 -10 -6 pre-RD non-pCR match
#19 7 -10 -3 pre-RD non-pCR match
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ICI [37, 94, 95, 97, 98]. However, on a case-by-case basis, 
the composition of infiltrating immune cells consider-
ably varies and determines the immune activity both 
in the absence and presence of ICI treatments. In the 
19 TNBC cases analyzed in our study, the TIL rate was 
not predictive of ICI response, as four patients showed 
increased infiltration but did not achieve pCR, while 
three patients with pCR did not display elevated immune 
cell infiltration.

Therefore, the multifaceted immune status of the 
individual patients needs to be integrated into a valid, 
diagnostic assay. First steps have already been done for 
example by the design of multiplex assays that allow 
an image based immune profiling to identify predic-
tive and prognostic (immune) signatures in BC patients 
(summarized in [99]). Yin and colleagues stratified BC 
patients into high and low risk cancers based on a seven 
gene expression assay (BATF, CD3D, HLA-DQB2, JUN, 
MAP2K6, NFKBIE, PAK1). Patients with high-risk 
tumors showed reduced overall survival and significant 
differences depending on the clinic-pathological param-
eters and immune cell infiltration rate. The authors 
applied this profile-derived nomogram and thereby pre-
dicted drug susceptibility and immune response [100]. 
Denkert and colleagues analyzed gene expression in 247 
biopsies (pretreated and during treatment cycles) based 
on the GeparNuevo trial [101]. Triggered by one cycle 
of durvalumab, an increased immune activation and 
reduced expression of proliferation associated genes was 
observed. Regardless of the therapy applied, immune 
related genes turned out as positive prognostic factors, 
whereas once again PD-L1 was identified as the most sig-
nificant prognosticator for distant disease-free survival.

Hammerl and colleagues analyzed 681 samples using 
multiplexed immunofluorescence, conventional IHC, 
gene expression, and TCR clonality assays. They classified 
tumors into three spatial immunophenotypes (“excluded”, 
“ignored”, and “inflamed”) based on TILs and CD8+ T 
cell infiltration. TNBC tumors with increased CD8+ T 
cell infiltration (“inflamed”) before treatment showed 
the best response to ICI treatment and were character-
ized by high TCR clonality and PD-1, TIM-3, and LAG-3 
co-expression. Resistance was, inter alia, associated with 
increased glycolysis (“excluded phenotype”) or CD163 
myeloid cell infiltration (“ignored phenotype”) [102].

Single cell analysis with imaging mass cytometry of 
samples from the neoTRIPaPDL1 clinical trial allowed 
the characterization of specific tumor microenviron-
ment phenotypes, and revealed a predictive role of 
PD-L1+ indoleamine 2,3-dioxigenase+ APCs and CD56+ 
neuroendocrine epithelial cells [103]. RNA-seq data 
from 242 patients of this trial were also analyzed by the 
determaIO assay, which includes a 27-gene signature 
that characterizes the phenotype of the tumor immune 

microenvironment. The authors found an enhanced 
probability of achieving pCR upon ICI treatment in 
patients with DetermaIO-positive tumors [104].

There are only a few studies that use flow cytom-
etry to assess the prognostic or predictive value in BC 
patients. Cattin observed an increased frequency of 
CD117+CD11b+ granulocytes and regulatory T cells 
in the PB associated with radiotherapy, but this study 
included only 13 patients and did not differentiate 
between BC subtypes [105]. In a cohort of 51 advanced 
BC patients, flow cytometry data from PB revealed an 
increase in activated OX40+/PD-1− T lymphocytes and a 
decrease in inhibitory myeloid cells and Tregs, which cor-
related with the clinical benefit upon systemic treatment 
[106]. Dyikanov and colleagues developed a platform 
that integrates flow cytometry-based immunophenotyp-
ing with bulk RNA-sequencing data [107]. They found an 
increased number of CX3CR1neg CD8+ TEMRA cells and 
monocytes, along with a decrease in naïve and memory 
B cells in patients compared to healthy donors. However, 
they combined data from various solid tumors (mostly 
pre-treated) and found that flow cytometric data gener-
ated from patients with similar diagnoses or treatments 
did not form distinguishable clusters.

All these various approaches have been applied to 
define a predictive or prognostic signature and under-
line the need for multiplexed immune-profiling. Here, 
we tested different secreted and expressed molecules by 
flow cytometry and LegendPlex assay and integrated the 
data into a scoring model with a potentially predictive 
value and an accuracy of 79%. This scoring system can be 
further adapted by selection of most relevant markers to 
further enhance the accuracy and the predictive power. 
This first proof-of-principle concept of applying a scor-
ing system represents a promising approach to identify-
ing potential responders to checkpoint therapy in TNBC, 
highlighting the importance of individualized treat-
ment strategies based on specific immunological pro-
files. However, only 19 TNBC patients, who received ICI 
treatment in accordance to the 522 trial [6] are included 
in this study. In addition, the scoring of all markers that 
is based on selected, relevant literature is of retrospec-
tive nature. Thus, further prospective clinical studies 
including a higher number of patients and additional 
adjustments (e.g., adapted marker selection, specified 
pre-defined cut-offs) are required to validate the evidence 
for clinical applications. Additionally, long-term follow-
up is essential to assess not only the early response to ICI 
(pCR at the time of surgery) but also sustained long-term 
remission.
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Conclusions
Overall, PD-1 was the highest expressed checkpoint mol-
ecule confirming its great potential for ICI. However, in 
individual patients, other checkpoints such as LAG-3 
and TIM-3 were considerably (co-) expressed. Scoring of 
relevant individual expression and secretion markers in 
ICI-treated TNBC patients before treatment enables to 
set-up a “predictive score”. This score was in accordance 
with the pCR determination in 79%. Possibly, an adapted 
scoring model for HR+ and HER2+ BC patients enables 
the identification of eligible patients within this subtypes 
likewise. Therefore, a scoring-based approach to sum-
marize multiplexed marker profiling might be an option 
to distinguish those patients, who most likely will benefit 
from checkpoint mono-therapy from those patients, who 
require additional combination therapies.
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