
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​
v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​​i​c​e​​n​s​e​s​​/​b​​y​-​n​c​-​n​d​/​4​.​0​/.

Liu et al. Cancer Cell International          (2025) 25:143 
https://doi.org/10.1186/s12935-025-03779-x

Cancer Cell International

†Qiong Liu and Zhaona Zhou contributed equally to this work.

*Correspondence:
Jun Guo
guojun0341036@126.com
1Department of Hematology, Rizhao People’s Hospital, No. 126 Tai’an 
Road, Rizhao, Shandong 276800, China
2Department of Medical Imaging, Rizhao People’s Hospital, No. 126 Tai’an 
Road, Rizhao, Shandong 276800, China

Abstract
Background  Acute myeloid leukemia (AML) is a hematological malignancy characterized by complex immune 
microenvironment. This study aims to identify immune-related prognostic biomarkers in AML.

Methods  Multiple public sequencing datasets were utilized to analyze differentially expressed genes (DEGs) in 
AML. Single-sample gene set enrichment analysis (ssGSEA) and weighted gene co-expression network analysis 
(WGCNA) were also performed. Immune cell infiltration was assessed at the single-cell level. NKT cell marker genes 
were intersected with the most AML-relevant module genes to identify key genes. Prognostic genes were screened 
using the Cox Lasso regression model, and their prognostic value was evaluated with Cox random forest and Kaplan-
Meier survival analyses. Gene expression was validated using RT-qPCR and Western blot, and immune cell levels were 
analyzed by flow cytometry.

Results  A total of 1,919 common DEGs were obtained between AML and controls. WGCNA revealed that the brown 
module was most strongly associated with AML. Single-cell analysis showed that NKT cell infiltration was significantly 
reduced in AML patients, consistent with ssGSEA results. Forty intersecting genes were identified between NKT 
cell marker genes and brown module genes. Cox Lasso regression identified 10 prognostic genes (FGFBP2, GZMB, 
GZMH, IKZF3, IL2RB, KLRB1, KLRC2, RHOF, RUNX3, and STAT4). A risk score model based on these genes stratified AML 
patients into high-risk and low-risk groups, with significant differences in survival prognosis between the two groups. 
RT-qPCR and Western blot analyses showed that these genes were significantly downregulated in AML patients. Flow 
cytometry results revealed significantly lower levels of NKT and CD8 + T cells in AML patients compared to controls.

Conclusion  This study identified key prognostic genes in AML and highlighted the critical role of NKT cells in AML 
pathogenesis. The study provides new insights and potential biomarkers for understanding AML biology, prognosis, 
and therapeutic targets.
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Introduction
Acute myeloid leukemia (AML) is an aggressive and 
highly heterogeneous hematologic malignancy charac-
terized by the abnormal proliferation of myeloid precur-
sor cells in the bone marrow, which suppresses normal 
hematopoiesis [1]. AML is the most common form of 
acute leukemia in adults. Despite significant improve-
ments in survival rates for some patients due to targeted 
therapies and hematopoietic stem cell transplantation, 
the overall 5-year survival rate remains below 30% [2, 
3]. The effectiveness of AML treatment is influenced by 
various factors, including the genetic heterogeneity of 
the tumor, complex molecular mechanisms, and signifi-
cant alterations in the immune microenvironment [4]. 
Immune evasion and a suppressive tumor microenviron-
ment are considered major obstacles to AML treatment, 
although their specific molecular mechanisms are not yet 
fully understood [5].

In AML patients, the function of effector immune cells 
is significantly impaired, creating an immunosuppres-
sive state that facilitates the survival and proliferation of 
AML cells [6, 7]. Moreover, the high degree of individ-
ual heterogeneity among AML patients poses challenges 
for prognosis. Traditional prognostic models based on 
clinical features and single biomarkers fail to adequately 
capture the molecular and immunological complexities 
of AML, limiting their ability to guide precision treat-
ment effectively [8]. With the widespread application of 
machine learning in biomedical research, integrating 
big data analysis and multi-omics data has made it pos-
sible to construct precise prognostic models for AML [9], 
offering new avenues for identifying prognostic factors 
and therapeutic targets.

Based on this, the present study aims to systematically 
analyze the molecular mechanisms, immune microen-
vironment changes, and prognostic features of AML 
patients using multi-level data integration and experi-
mental validation approaches. First, by integrating pub-
lic transcriptome datasets, we identified differentially 
expressed genes (DEGs) in AML and used weighted 
gene co-expression network analysis (WGCNA) to con-
struct key gene modules associated with AML. Second, 
we explored changes in the immune microenvironment 
of AML patients through single-sample gene set enrich-
ment analysis (ssGSEA) and single-cell RNA sequenc-
ing. Third, we applied Cox Lasso regression and Cox 
random forest algorithms to screen key prognostic genes 
and construct a risk score model to evaluate their clini-
cal significance. Finally, RT-qPCR, Western blot, and flow 
cytometry were used to experimentally validate changes 
in key genes and immune cell populations. By combining 
multi-level and multi-technical approaches, this study 
aims to elucidate the core pathological mechanisms of 

AML and lay the groundwork for future individualized 
therapies and biomarker research.

Materials and methods
Data collection and differential expression analysis
The GSE114868 dataset [10] includes gene expression 
profiles of bone marrow mononuclear cells from 194 
AML patients and 20 healthy controls. The GSE37642 
dataset [11] contains gene expression data and clinical 
information for bone marrow mononuclear cells from 
136 AML patients. Gene expression data from these 
datasets were normalized using the oligo and affy pack-
ages. The TCGA dataset includes gene expression data, 
clinical information, mutation information and for 179 
AML patients, while the gene expression profiles of 
337 normal whole blood samples were obtained from 
the GTEx cohort [12]. Additionally, single-cell RNA 
sequencing (scRNA-seq) data were derived from the 
GSE235857 dataset [13], which contains peripheral blood 
mononuclear cell (PBMC) data from 6 AML patients and 
6 controls.

Differentially expressed genes (DEGs) between AML 
samples and normal controls were identified using 
the limma package to compare gene expression dif-
ferences. The following criteria were applied to define 
DEGs:|log2FC| > 1 and p < 0.05. To improve the efficiency 
of DEG identification, DEG analyses were performed 
separately for different datasets (TCGA, GTEx, and 
GSE114868), and overlapping genes across these datasets 
were determined using Venn diagram analysis. The over-
lapping genes were subjected to Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses using the clusterProfiler package.

Weighted gene Co expression network analysis
To uncover the potential molecular mechanisms and 
immune-related modules in AML, weighted gene co-
expression network analysis (WGCNA) was performed 
to construct a gene co-expression network. Analysis was 
conducted using the WGCNA package in R, with an 
appropriate soft threshold (power) selected to ensure the 
scale-free topology of the network. Genes were grouped 
into multiple modules based on their expression patterns. 
The correlation between each module and AML clinical 
traits was calculated to identify the module most strongly 
associated with AML.

Single sample gene set enrichment analysis
To further investigate the immune microenvironment in 
AML, single-sample gene set enrichment analysis (ssG-
SEA) was employed to evaluate the infiltration levels of 
various immune cells. Known immune cell marker gene 
sets from the ImmPort database were used to repre-
sent different immune cell types. ssGSEA calculates the 
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enrichment score (ES) of specific immune cell-related 
gene sets in each sample to estimate the relative abun-
dance of different immune cell populations.

Analysis of single-cell RNA sequencing data
Immune cell infiltration in AML patients was assessed 
at the single-cell level using the GSE235857 dataset. The 
Seurat package was employed for quality control of sin-
gle-cell data, retaining cells with 500 to 6,000 detected 
genes and a mitochondrial gene expression proportion 
of less than 20%. Log-normalization was applied to nor-
malize the gene expression matrix of each cell. Princi-
pal component analysis (PCA) was performed to reduce 
dimensionality, and the top 20 principal components 
were selected for downstream analysis. Further dimen-
sionality reduction was conducted using t-SNE, and clus-
tering analysis was performed using the FindClusters 
function in Seurat. Immune cell subsets were annotated 
by analyzing the gene expression characteristics of each 
cluster in combination with known immune cell marker 
genes. The proportion of each immune cell population 
in AML patients and healthy controls was calculated to 
evaluate the infiltration patterns of various immune cells 
in AML.

To identify intersection genes, NKT marker genes were 
compared with genes from the AML-associated module 
identified by WGCNA. Genes expressed in both datasets 
were selected as intersection genes.

Cox Lasso regression model and prognostic gene 
screening
Cox Lasso regression was used to identify prognostic 
genes in AML. Lasso regression applies L1 regularization 
to select genes associated with prognosis, enabling the 
construction of a risk score model based on prognostic 
genes. The model was initially trained using differentially 
expressed candidate genes and subsequently validated 
using the Cox proportional hazards regression model. 
Further validation was performed using Kaplan-Meier 
survival analysis, stratifying AML patients into high-
risk and low-risk groups to evaluate survival differences. 
The diagnostic value of the gene-based risk score for 
AML prognosis was assessed using ROC curve analysis. 
The prognostic impact of the identified genes on AML 
patients was further evaluated using Cox random forest 
analysis and Kaplan-Meier (K-M) survival analysis.

Clinical sample collection
Peripheral blood PBMC samples were randomly collected 
from 10 AML patients and 10 age- and sex-matched 
healthy individuals as controls. All sample collection and 
processing complied with the Declaration of Helsinki and 
ethical guidelines and was approved by the Ethics Com-
mittee of Rizhao People’s Hospital (IEC-Form-016-6.1). 

Written informed consent was obtained from all 
participants.

Inclusion Criteria: Diagnosis consistent with the World 
Health Organization (WHO) criteria for acute myeloid 
leukemia (2016 revision); Cytological confirmation of 
AML through bone marrow aspiration; Age ≥ 18 years, 
with no restrictions on race or sex; No history of other 
malignancies or significant organ dysfunction; No prior 
chemotherapy or other AML treatments before sample 
collection.

Exclusion Criteria: Presence of major infections or 
other immune system diseases; Pregnant or breastfeed-
ing women.

RT-qPCR
Total RNA was extracted from PBMCs using TRIzol 
reagent (Invitrogen), and RNA concentration was mea-
sured with a NanoDrop spectrophotometer. For com-
plementary DNA (cDNA) synthesis, 1  µg of total RNA 
from each sample was used with the PrimeScript™ RT 
Reagent Kit (TaKaRa) according to the manufacturer’s 
instructions. Specific primers for target genes and the 
housekeeping gene GAPDH were designed using the 
Primer-BLAST tool (Table S1). PCR reactions were per-
formed using TB Green™ Premix Ex Taq™ II (TaKaRa) on 
an ABI StepOnePlus™ Real-Time PCR system. Ct values 
for all samples and genes were recorded, and relative 
gene expression levels were calculated using the 2−ΔΔCt 
method. Each sample was analyzed in at least three tech-
nical replicates.

Western blot
Proteins were extracted from PBMCs using RIPA lysis 
buffer supplemented with protease and phosphatase 
inhibitors. Protein concentration was measured using 
a BCA protein assay kit (Beyotime, China). A total of 
30  µg of protein was loaded onto an SDS-PAGE gel for 
electrophoresis and subsequently transferred onto a 
PVDF membrane. The membrane was blocked with 5% 
skim milk for 2  h and then incubated overnight at 4  °C 
with specific primary antibodies (Abcam, CA, UK). The 
membrane was further incubated with HRP-conjugated 
secondary antibodies (Abcam) for 2  h. ECL detection 
reagents were applied evenly to the membrane, and che-
miluminescent signals were captured using a ChemiDoc 
imaging system. β-actin was used as the internal refer-
ence protein, and the grayscale values of target protein 
bands were measured using ImageJ software (NIH, MD, 
USA). Each sample was analyzed in at least three techni-
cal replicates.

Flow cytometry analysis
To further validate the changes in immune cell levels 
in AML patients, flow cytometry was used to analyze 
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immune cells in peripheral blood. Fluorescently labeled 
antibodies included CD45 KO, CD3 APC, and CD8 
FITC for CD8 + T cells, and CD45 KO, CD3 APC, and 
CD56 PerCP for NKT cells. A total of 1 × 106 PBMCs 
were resuspended in 100 µl PBS in flow tubes, followed 
by the addition of antibody mixtures and incubation 
at 4  °C in the dark for 30  min. Cells were washed with 
1 ml PBS, centrifuged (300 g, 5 min), and resuspended in 
PBS. Immune cell frequencies and numbers were mea-
sured using a BD FACSCanto™ II flow cytometer. All flow 
cytometry results were analyzed using FlowJo software 
(Tree Star) and compared with normal controls. Each 
sample was analyzed in at least three technical replicates.

Statistical analysis
All statistical analyses were performed using R (v4.1.0) 
and GraphPad Prism (v9.3.0, GraphPad Software, USA). 
Student’s t-test or one-way ANOVA was used to compare 
results between groups. A p-value less than 0.05 was con-
sidered statistically significant.

Results
Identification of differential genes
In the transcriptomic data of AML and normal control 
groups, 10,401 differentially expressed genes (DEGs) 
were identified from the TCGA and GTEx datasets 
(Fig.  1A), and 2,870 DEGs were identified from the 
GSE114868 dataset (Fig. 1B). Intersection analysis iden-
tified 1,919 common DEGs shared across these datas-
ets (Fig.  1C and D). Gene Ontology (GO) enrichment 
analysis revealed that these common DEGs were signifi-
cantly enriched in processes such as leukocyte activation 
and immune response (Fig.  2A). Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis showed 
that these DEGs were significantly involved in pathways 
such as cytokine-cytokine receptor interaction, chemo-
kine signaling pathway, and NOD-like receptor signaling 
pathway (Fig. 2B).

Co-expression network and immune cell infiltration
Using the common DEGs, a co-expression network 
was constructed through WGCNA. By selecting a 

Fig. 1  Differential analysis between AML and controls. (A) Volcano plot of differentially expressed genes in TCGA and GTEx. (B) Volcano plot of differ-
entially expressed genes in GSE114868. (C) The intersection of two sets of differentially expressed genes. (D) Heatmap of expression of common DEGs
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soft-thresholding power of β = 14 (R² = 0.85), four gene 
modules were identified (Fig. 3A and B), each consisting 
of genes with similar expression patterns. Further analy-
sis of module-clinical trait correlations revealed that the 
brown module had the strongest association with AML 
(Fig. 3C). The ssGSEA was used to assess differences in 
immune cell infiltration levels between AML patients 
and healthy controls. The results showed that multiple 
immune cells had significantly lower enrichment scores 
in AML patients compared to healthy controls (Fig.  4A 
and B).

Screening important immune cells and genes in AML
Single-cell RNA sequencing data were used to ana-
lyze the immune microenvironment of AML patients 
and healthy controls, revealing significant alterations 
in immune cell composition in AML patients. Through 
t-SNE dimensionality reduction and cell clustering 
analysis, 28 clusters were identified (Fig.  5A). Based on 
the expression levels of cell markers, 15 immune cell 
types were annotated, including MAIT, NK, CD8 + Trm, 
CD8 + Tem, Bn, CD8 + Teff, CD4 + Tn, CD8 + Tn, natural 
killer T cells (NKT), platelet, plasma, CD4 + Tcm, DC, 
FCGR3A + monocyte, and CD14 + monocyte (Fig. 5B and 
C).

By comparing immune cell expression levels between 
AML patients and controls, we found that CD4 + Tcm 
and CD8 + Trm were significantly increased in AML, 
whereas NKT, MAIT, NK, and CD8 + Tn cells were sig-
nificantly reduced (Fig. 5D, E and F). Further analysis of 
intercellular communication among different cell subsets 
revealed enhanced interactions between CD8 + Tn and 
CD8 + Teff with NKT cells in AML patients (Figure S1). 
Notably, the significant reduction of NKT cells in AML is 
consistent with the ssGSEA results.

Prognostic gene screening and risk scoring model 
construction
NKT marker genes were intersected with the genes from 
the brown module identified in the WGCNA analysis, 
resulting in 40 overlapping genes (Fig. 6A). Using the Cox 
Lasso regression model, 10 genes closely associated with 
AML prognosis were selected with the optimal λ value 
determined at 0.04 during cross-validation: FGFBP2, 
GZMB, GZMH, IKZF3, IL2RB, KLRB1, KLRC2, RHOF, 
RUNX3, and STAT4 (Fig. 6B and C).

Based on the expression levels of these 10 prognos-
tic genes, risk score models were constructed in both 
the TCGA (Fig. 7A, B and C) and GSE37642 (Fig. 7D, E 
and F) datasets. AML patients were stratified into high-
risk and low-risk groups. Kaplan-Meier survival analysis 
showed that the overall survival of the high-risk group 
was significantly shorter than that of the low-risk group. 
Additionally, time-dependent ROC curve analysis dem-
onstrated that the risk score model achieved high predic-
tive accuracy for survival at 1 year, 3 years, and 5 years. 
These findings indicate that the model is an effective 
prognostic tool for predicting AML patient survival. 
To further explore the relationship between risk score 
models and molecular genetic characteristics of AML 
patients, we analyzed the distribution of gene mutations 
in AML patients in different risk groups (high-risk group 
and low-risk group) in the TCGA database (Fig. 7G). The 
results showed that the mutation frequency of genes such 
as DNMT3A, and NPM1 was higher in the high-risk 
group than in the low-risk group. This indicates that the 
risk scoring model constructed in this study can further 
differentiate patient subgroups at the molecular genetic 
level.

The contribution of the prognostic genes to patient sur-
vival was further evaluated using the Cox random forest 
algorithm. The results showed that GZMB and FGFBP2 

Fig. 2  Enrichment analysis of common DEGs. (A) The main GO enrichment terms enriched by common DEGs. (B) The main KEGG enrichment terms 
enriched by common DEGs
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significantly influenced patient prognosis in both the 
TCGA (Fig.  8A) and GSE37642 (Fig.  8B) datasets. 
Kaplan-Meier survival analysis revealed that FGFBP2, 
GZMB, GZMH, IL2RB, KLRB1, KLRC2, RHOF, RUNX3, 
and STAT4 significantly affected prognosis in the TCGA 
dataset (Figure S2A), while FGFBP2, GZMB, GZMH, 
IKZF3, IL2RB, and KLRB1 significantly impacted prog-
nosis in the GSE37642 dataset (Figure S2B).

Experimental verification
RT-qPCR and Western blot analyses were performed to 
validate the expression levels of prognostic genes in AML 
patients and healthy controls. RT-qPCR results showed 
that the mRNA levels of FGFBP2, GZMB, GZMH, 
IKZF3, IL2RB, KLRB1, KLRC2, RHOF, RUNX3, and 
STAT4 were significantly lower in AML patient samples 

compared to controls (Fig.  9A). Western blot analysis 
demonstrated that protein expression levels were con-
sistent with RT-qPCR results, with significantly reduced 
expression of the prognostic genes in AML patients com-
pared to healthy controls (Fig. 9B).

Flow cytometry further confirmed changes in immune 
cell levels, revealing that the levels of NKT cells and 
CD8 + T cells were significantly lower in AML patients 
compared to controls (Fig. 10).

Discussion
This study systematically analyzed the molecular mecha-
nisms, immune microenvironment changes, and prog-
nostic factors of AML. By integrating bioinformatics, 
machine learning, and experimental validation, the study 
uncovered the roles of key genes and immune cells in 

Fig. 3  Weighted gene co-expression network analysis (WGCNA) reveals key modules associated with AML. (A) Soft-thresholding powers analysis. (B) 
Cluster diagram of gene modules. (C) Module-trait relationship heatmap showing the correlation between gene modules and AML clinical traits
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AML, providing new insights for the diagnosis, prognosis 
evaluation, and treatment of AML.

DEGs identified in the transcriptomic data of AML 
patients and healthy controls were significantly enriched 
in immune-related pathways, including leukocyte acti-
vation, cytokine-cytokine receptor interaction, chemo-
kine signaling pathway, and NOD-like receptor signaling 
pathway. Suppression of the immune microenvironment 
enables malignant cells to evade immune surveillance, 
and numerous new therapeutic approaches targeting 
immune evasion aim to restore anti-leukemic immune 
activity [14]. Altered cytokine signaling in the immune 
microenvironment contributes to disease progression 
and treatment resistance [15]. Cytokines and chemo-
kines within the bone marrow microenvironment play 
critical roles in supporting AML cell survival, promoting 
resistance to conventional chemotherapy and targeted 
therapies, and ultimately leading to disease relapse [16]. 
Activation of the NOD-like receptor signaling pathway 
induces chronic inflammation, which promotes AML 
development and progression [17]. These functional 

abnormalities suggest that the immune system in AML 
patients may be impaired, further facilitating tumor cell 
growth and proliferation.

At the immune microenvironment level, ssGSEA analy-
sis and single-cell RNA sequencing revealed significantly 
reduced infiltration of several key immune cell subsets 
in AML patients, particularly NKT cells and CD8 + T 
cells. This finding indicates that immune evasion in AML 
may be closely associated with the depletion of effector 
immune cells. Consistent with our results, the levels of 
CD8 + effector subsets and NKT cells in AML patients 
were significantly lower than in healthy controls [5]. Sup-
pression of T-cell proliferation and NKT cell numbers in 
AML has been linked to an immunosuppressive microen-
vironment and worse prognosis [18]. Decreased intracel-
lular signaling and reduced cytotoxicity in NK and NKT 
cells in AML patients are associated with an increased 
risk of infection and mortality [19]. These findings dem-
onstrate that the immune microenvironment in AML is 
significantly dysregulated, with immune evasion emerg-
ing as a critical mechanism driving AML progression.

Fig. 4  Single-sample gene set enrichment analysis (ssGSEA) reveals altered immune infiltration in AML. Comparison of immune cell infiltration scores 
between AML patients and healthy controls in TCGA (A) and GSE114868 (B)
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Furthermore, WGCNA identified the brown module 
as the most strongly associated with AML, suggesting 
its potential central role in AML pathogenesis. Although 
hub genes identified by WGCNA are valuable, we spe-
cifically chose genes from the intersection with NKT cell 
markers and further refined these through Cox Lasso 
regression to prioritize genes closely linked to AML 
prognosis and immune dysregulation. By intersecting 
NKT cell marker genes with genes in the brown module, 
40 overlapping genes were identified. Cox Lasso regres-
sion further selected 10 genes closely associated with 
AML prognosis. Among these, FGFBP2 [20] and KLRC2 
[21] were found to be significantly downregulated in 
AML. FGFBP2, GZMB, and GZMH are cytotoxic factors 
highly expressed in NKT cells and play essential roles 
in NK cell-mediated immune functions [22, 23]. High 
expression of GZMB has been linked to poorer clinical 
outcomes in AML [24]. IL2RB is associated with immune 
evasion and suppression [25, 26]. Increasing evidence 
suggests that KLRB1 plays a critical role in tumor immu-
nity, with its high expression in most cancers correlating 
with favorable prognosis [27]. In addition, the in vitro 
expansion of NKG2C + NK cells had been proposed as a 
simple strategy to enhance NK cell antitumor cytotox-
icity for immunotherapy [28]. Contrary to our findings, 

a study by Wen et al. [29] reported that RHOF is over-
expressed in AML and associated with poor prognosis. 
Similarly, RUNX3 is highly expressed in AML cells and 
linked to adverse outcomes in AML patients [30]. STAT4, 
which is upregulated in AML, has also been associated 
with unfavorable prognosis [31].

These genes are not only closely associated with critical 
biological processes such as immune regulation and cyto-
toxicity but also exhibit significant prognostic value. The 
constructed risk score model effectively stratified AML 
patients into high-risk and low-risk groups and demon-
strated high accuracy in predicting survival at 1, 3, and 
5 years. Additionally, the Cox random forest model fur-
ther confirmed the critical prognostic contributions of 
genes such as FGFBP2 and GZMB, suggesting that these 
genes may serve not only as prognostic markers but also 
as potential therapeutic targets.

Despite the significant progress made in this study, sev-
eral limitations remain. First, the heterogeneity of public 
datasets may influence the analytical results, necessitat-
ing validation with more multicenter datasets. Second, 
although the expression patterns of key genes were 
experimentally validated in clinical samples, further in 
vitro functional experiments, such as gene knockdown 
or overexpression assays, cell proliferation, apoptosis 

Fig. 5  Single-cell RNA sequencing analysis reveals immune microenvironment changes in AML. (A) t-SNE plot of cell clusters. (B) Violin plots of expression 
of marker genes in cell clusters. (C) t-SNE plot of immune cells. (D) t-SNE plot of immune cells in AML and control groups. (E) Percentage of immune cells 
in AML and control groups. (F) Differences in immune cells between AML and control

 



Page 9 of 14Liu et al. Cancer Cell International          (2025) 25:143 

assays, and functional immune assays, are required to 
elucidate the precise biological roles and mechanisms 
of these genes in AML pathogenesis. Such experiments 
will be conducted in our future studies. Additionally, 
due to the limited sample size and the relatively nar-
row scope of clinical information collected in this study, 
we were unable to systematically correlate gene expres-
sion and immune cell distribution with detailed clinical 
characteristics. Future studies will incorporate larger 
patient cohorts and comprehensive clinical data to fur-
ther explore these correlations and validate the clinical 
applicability of our findings. Finally, while the risk score 
model demonstrated high predictive performance, its 
feasibility and robustness in clinical applications need to 
be validated in larger cohorts of AML patients, particu-
larly including patients undergoing targeted therapies. 
Further prospective studies focusing specifically on tar-
geted therapy-treated AML populations are warranted to 
confirm whether this prognostic score maintains validity 

and practical utility in guiding treatment decisions in this 
subgroup.

Conclusion
This study systematically revealed key changes in the 
immune microenvironment of AML and constructed an 
efficient prognostic model based on NKT cell-associated 
genes. The inactivation of NKT cells and their related 
genes may represent a critical mechanism of immune 
evasion in AML. Future immunotherapeutic strate-
gies aimed at restoring NKT cell function hold promise 
as novel treatment approaches for AML patients. This 
research not only provides important theoretical support 
for the study of AML pathogenesis but also offers new 
targets and tools for the development of diagnostic and 
therapeutic strategies in the context of precision medi-
cine for AML.

Fig. 6  Cox Lasso regression identifies prognostic genes. (A) The intersection of NKT marker genes and brown module genes in WGCNA analysis. (B) Cross-
validation for the selection of the optimal λ value. (C) Gene coefficient profiles as λ increases in Lasso regression
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Fig. 7  Construction and validation of risk score model for AML patients. (A) Distribution of risk scores and survival status of AML patients in TCGA. (B) 
Kaplan-Meier survival curves of AML patients stratified into high-risk and low-risk groups based on the risk score in TCGA. (C) Time-dependent ROC 
curves for the risk score model at 1 year, 3 years, and 5 years in TCGA. (D) Distribution of risk scores and survival status of AML patients in GSE37642. (E) 
Kaplan-Meier survival curves of AML patients stratified into high-risk and low-risk groups based on the risk score in GSE37642. (F) Time-dependent ROC 
curves for the risk score model at 1 year, 3 years, and 5 years in GSE37642. (G) The distribution of gene mutations between high-risk and low-risk groups
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Fig. 8  Evaluation of prognostic genes. Cox random forest of prognostic genes in TCGA (A) and GSE37642 (B)
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Fig. 9  Detection of prognostic genes. (A) The mRNA levels of marker genes in AML and controls detected by qRT-PCR. (B) Protein levels of marker genes 
in AML and controls detected by western blot. *P < 0.05, **P < 0.01, ***P < 0.001
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