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Introduction
Cervical cancer (CC), a frequent female malignancy, 
possesses a high rate of mortality worldwide and is con-
sidered a major global health challenge [1, 2]. Adeno-
carcinoma and squamous cell carcinoma, respectively 
generate 25% and 70% of all CCs and are the most com-
mon histological subtypes [3, 4]. Several factors and 
genes are implicated in generating the molecular regula-
tory mechanism of CC [5, 6].

Additionally, high-risk subtypes of the human papil-
lomavirus (HPV) are known to be responsible for most 
CCs. Considering the major contribution of this virus, 
HPV screening and vaccination programs are identified 
as effective strategies in the prevention of CC [7]. In the 
context of treatment, it should be noted that surgical 
resection is still the foremost treatment option for early-
stage CCs due to its acceptable prognosis [5, 6]. However, 
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Abstract
With all diagnostic and therapeutic advances, such as surgery, radiation- and chemo-therapy, cervical cancer (CC) is 
still ranked fourth among the most frequent cancers in women globally. New biomarkers and therapeutic targets 
are warranted to be discovered for the early detection, treatment, and prognosis of CC. As component of the non-
coding RNA’s family, microRNAs (miRNAs) participate in several cellular functions such as cell proliferation, gene 
expression, many signaling cascades, apoptosis, angiogenesis, etc. MiRNAs can suppress or induce programmed 
cell death (PCD) pathways by altering their regulatory genes. Besides, abnormal expression of miRNAs weakens 
or promotes various signaling pathways associated with PCD, resulting in the development of human diseases 
such as CC. For that reason, understanding the effects that miRNAs exert on the various modes of tumor PCD, 
and evaluating the potential of miRNAs to serve as targets for induction of cell death and reappearance of 
chemotherapy. The current study aims to define the effect that miRNAs exert on cell apoptosis, autophagy, 
pyroptosis, ferroptosis, and anoikis in cervical cancer to investigate possible targets for cervical cancer therapy. 
Manipulating the PCD pathways by miRNAs could be considered a primary therapeutic strategy for cervical cancer.
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the diagnosis and treatment platform for CC are not 
specified for monitoring the prognosis, tumor metastasis, 
and recurrence, thereby lacking individualized treatment.

Through eliminating damaged cells, cell death takes a 
fundamental role in the maintenance of physiological 
homeostasis and can appear as an aberrant pathologi-
cal response to damaging stimuli [8, 9]. In accordance 
with morphology, biochemistry, and function, cell death 
modes are divided into accidental cell death and regu-
lated cell death (RCD) [10]. As the name suggests, acci-
dental cell death is an uncontrolled biological process in 
reaction to accidental injury stimuli [11]. Despite this, 
RCD is characterized by regulated signaling cascades 
with critical roles in the development of organisms or tis-
sue renewal [12]. Malignant cells, however, are capable 
of evading the RCD routes through various mechanisms 
[13]. RCD pathways are pivotal for cancer immune sur-
veillance, progression, metastasis, and the prognosis of 
patients [14, 15]. Different forms of RCD could alter the 
tumor microenvironment through the release of patho-
gen- or damage-associated molecular patterns (PAMPs 
or DAMPs), which impacts anti-cancer therapy [16–18]. 
Therefore, more investigations are a must for a more 
comprehensive understanding of the implication of cell 
death pathways in cancer therapy and development.

MiRNAs are small, non-coding RNAs capable of bind-
ing to the target mRNAs and, altering the translation 
of the target proteins, or even degrading the mRNA 
[19–21]. Various cellular processes, like metabolism, 
proliferation, and cell death, in distinct types of cells are 
modulated by miRNAs [19, 22, 23]. Abnormal expression 
of miRNAs weakens or modifies various RCD, leading to 
human cancer development. As well, several miRNAs are 
identified to alter the expression of RCD genes [24, 25]. 
Aberrations involving miRNAs involved in apoptosis, 
autophagy, pyroptosis, ferroptosis, anoikis, and necrop-
tosis can also influence the physiological conditions 
and affect carcinogenesis. The present study contains 
a review of the significant role of miRNAs in control-
ling the critical cell death pathways, namely, apoptosis, 
autophagy, pyroptosis, anoikis and ferroptosis of cervical 
cancer cells.

MicroRNA biogenesis
During canonical biogenesis, RNA polymerase II tran-
scribes miRNAs and produces a double-stranded hair-
pin primary (pri)-miRNA transcript, which are further 
cleaved into a short hairpin structure known as pre-
miRNA. After translocation of pre-miRNA to the cyto-
plasm, their terminal loop gets removed by the RNase III 
endonuclease Dicer and leaves a mature miRNA duplex 
strands [26]. Either strand of mature miRNA (− 5p or 
− 3p) can be loaded onto the Argonaute protein to gen-
erate the RNA-induced silencing complex (RISC). The 

strand with more thermodynamical stability will be 
proportioned in RISC while the less stable strand will 
be degraded [27]. The proportion of strands can also be 
equal or dependent on the cell type. Besides, according 
to the functionality of proportion of the strands (− 5p 
or − 3p), RISC could be directed towards divergent gene 
targets [28, 29]. Next, through attaching to the 3’-UTR 
of target mRNA, miRNAs affect gene expression, either 
by translational repression or even degradation, result-
ing in the regulation of various cellular processes and 
disease progression. Moreover, both miRNAs and pre-
miRNAs are stable in extracellular environment and can 
be released into the bloodstream in free form or in exo-
somes, microvesicles, high-density lipoproteins or pro-
tein complexes, where they are adsorbed by cell-to-cell 
communication [30]. Therefore, they are considered ther-
apeutic targets and clinical biomarkers for individualized 
therapy in complex diseases [31–35].

Apoptotic and anti-apoptotic MicroRNAs in 
cervical Cancer
Among the different types of RCD, apoptosis and autoph-
agy are the most pivotal ones with the ability to promote 
organelle degradation or stress-induced cell death and 
serve a critical role in targeted therapy as well as regu-
lating cancer cell death [36]. Apoptosis is identified as a 
crucial intracellular process for maintaining organism 
homeostasis and controlling cell populations. Various 
morphological features of apoptosis such as shrinkage 
of cell, condensation of chromatin, blebbing of the mem-
brane, DNA fragmentation, and the formation of apop-
totic bodies [37–39].

Depending on the activation, apoptosis is categorized 
into two modes; intrinsic and extrinsic pathways. The 
intrinsic pathway activates once stressed cells produce 
an internal signal and relies on the cytoplasmic release 
of cytochrome C into the mitochondrial intermembrane 
space (MIS), through the mitochondrial outer membrane 
(MOM) pores. BCL-2 family proteins are the main reg-
ulators and effectors of the permeabilization of MOM, 
resulting in the release of cytochrome C from the MIS 
[40]. BCL-2 family members are categorized as effectors 
(including BAX and BAK), the pro-apoptotic BH3-only 
(e.g., Bad, Bid, Bik, and Bim) and anti-apoptotic proteins 
(Bcl-2, Bcl-xL, Bcl-w, Mcl-1, and A1) [40, 41]. Through 
the release of cytochrome C from MOM into the cytosol, 
BCL-2 members trigger the activation of caspase cascade, 
leading to apoptosis [42]. In the extrinsic pathway, on the 
other hand, the activation of receptors through members 
of the tumor necrosis factor (TNF) receptors (e.g., FAS) 
and TNF-related apoptosis inducing ligand (TRAIL) 
receptors, is required. Binding of death ligands (TNFα, 
FAS, and TRAIL) to their receptors activates the extrinsic 
pathway and further result in recruitment of caspase9/10 



Page 3 of 23Taghizadieh et al. Cancer Cell International          (2025) 25:153 

and, thereby the formation of a death-inducing signaling 
complex (DISC) [42]. Afterward caspase9/10 activated 
by autocleavage in the DISC, triggers the activation of 
downstream executioner caspases (caspase3/6/7) (Fig. 1) 
[43, 44].

Caspases, a group of proteases, are mostly identified 
by their role in PCD (mostly apoptosis and pyropto-
sis), and the inflammatory cascade. Caspase3/6/7/8/9 in 
mammals are known as apoptotic caspases, whereas cas-
pase1/4/5/12 in humans and caspase1/11/12 in mice are 
considered as inflammatory caspases [45]. Furthermore, 
apoptotic caspases are classified into initiator caspases 
(caspase-8/9) and executioner caspases (caspase3/6/7) 
based on their mechanism of action [46–48].

All, PCD pathways such as apoptosis, autophagy, 
pyroptosis, ferroptosis, and necroptosis appear to get 
regulated by various miRNAs. In that regard, within the 
next section, we summarize the mechanism of inhibit-
ing or inducing apoptosis in cervical cancer by cellular 
miRNAs.

Apoptotic MicroRNAs in cervical cancer
In critical biological and pathological processes, miRNAs 
are found to be crucial regulators [19, 21, 45, 46]. Con-
sidering the pivotal part of miRNAs in the regulatory 
network, any changes in their expression are correlated 

with tumor progression. In that context, many researches 
have been centered on the participation of miRNAs to 
the carcinogenesis and progression of CC [47–50]. For 
instance, the role of miR-218 as an apoptosis regulator 
and suppressor of progression has been investigated in 
CC [51–53]. Yu et al. [54] reported that the expression 
level of survivin and miR-218 are downregulated and 
upregulated, respectively, in cisplatin (DDP)-resistant 
HeLa/DDP and SiHa/DDP cells in contrast to the mock 
HeLa and SiHa cells. In return, enforced expression of 
miR-218 elevates the cisplatin sensitivity of CC cells by 
promoting apoptosis. As well, induction of miR-218 is 
found to promote apoptosis in CC cells’ resistance to 
DDP by targeting survivin [54]. In that regard, Yuan et 
al. [55] found that enforcing the expression of miR-218 
elevated the radiosensitivity in CC cells, including HeLa, 
SiHa, C33A, and CaSki cells by promoting apoptosis 
[55]. Similarly, another study demonstrated that miR-218 
increases chemosensitivity to DDP in Hela cells via pro-
moting CC cell apoptosis [56]. Zhu et al. observed that 
miR-218 overexpression suppresses cell viability and ele-
vates apoptosis in CC cells via the JAK2/STAT3 pathway 
[57]. GLI3, in the GLI family, affects proliferation and 
apoptosis in cancer cells [58–60]. Recently, it has been 
observed that Gli3 mRNA and protein expression are 
inversely associated with levels of miR-218 in CC tissues 

Fig. 1 Cancer cell apoptosis and regulatory non-coding RNAs. Regulatory microRNAs are highlighted in orange
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[61]. In addition, miR-218 is found as a suppressor of CC 
cells proliferation, apoptosis, and cell cycle progression of 
through downregulating Gli3. It also has been established 
that transfection of miR-218 mimics in CC cells results 
in promoted apoptosis and enhanced caspase-3 activity 
[61]. These results suggested that miR-218 can suppress 
cell growth and regulate tumor progression through ele-
vating the activity of caspase-3 and inducing apoptosis in 
CC cells.

The phosphoinositide 3-kinase (PI3K)/protein kinase 
B (Akt) cascade, is a critical signaling cascade which 
involved in regulating apoptosis, and blocks the expres-
sion of pro-apoptotic proteins, suppresses tissue apopto-
sis, and elevates the survival rate of cancerous cells [62]. 
Focal adhesion kinase (FAK) is a signaling molecule iden-
tified to activate PI3K [63, 64]. In fact, FAK participates 
in the cell survival regulation and protection from apop-
tosis [65–67]. It has also been established that FAK sup-
presses cell apoptosis through triggering the PI3K/Akt 
cascade [68, 69]. Phosphorylation of FAK occurs upon 
stimulation and enables it to attach to the p85 subunit of 
PI3K and consequently triggers the PI3K/Akt signal cas-
cade. Furthermore, activation of FAK-PI3K/Akt pathway 
participates in the protection of cancer cells from oxida-
tive stress-induced apoptosis through promoting nuclear 
factor-κB (NF-κB) to mediate the expression of caspase 
inhibitors of IAPs [66]. Similar to FAK, MTDH serves 
a crucial role in various biological processes in tumori-
genesis and development through integrating oncogenic 
cascades, such as PI3K/AKT, NF-κB, mitogen-activated 
protein kinase (MAPK), and Wnt/β-catenin [70, 71]. 
Overexpression of MTDH suppresses apoptosis, and in 
return, downregulation of MTDH is able to reduce tumor 
cell growth, and promote apoptosis [72, 73]. In CC, 
MTDH is overexpressed and has a remarkable associa-
tion with tumor size, lymph node metastasis, TNM stage, 
and tumor differentiation [74, 75]. Liang et al. [76] found 
that upregulated miR-433 induces CC apoptosis and sup-
presses proliferation and invasion by targeting MTDH. 
Additionally, upregulated MTDH mRNA expression 
in CC tissues has an inverse association with miR-433 
expression. Overexpression of MTDH is able to reverse 
the influence of upregulated miR-433 in regard to prolif-
eration, invasion, and apoptosis of CC cells. Moreover, 
miR-433 is found to inactivate AKT and β-catenin path-
ways in CC via targeting MTDH [76]. Collectively, these 
data indicate that miR-433 suppressed the growth of CC 
cells via the promoting apoptosis pathway by modulating 
the FAK-MTDH/PI3K/AKT signaling cascade.

Furthermore, BCL-2 protein is found to inhibit apop-
tosis through the formation of a heterodimer with BAX 
and guarantee cell survival by controlling the Ca2t con-
centration and antioxidant effect [77]. BCL-2 is also 
able to suppress the activities of caspase-9/3/6/7 [78], in 

order to eliminate apoptosis, elongate the survival time 
of tumor cells, and create malignant cell transformation 
[79]. Recent evidence supports that miRNAs act as tumor 
suppressor factors in CC through promoting apoptosis 
pathways via targeting Bcl-2 (Table 1). For example, Chen 
and colleagues [84] found that miR-744 negatively regu-
lates Bcl-2 and subsequently suppresses CC growth and 
progression through promoting apoptosis [80]. Enforced 
miR-211 expression, on the other hand, promotes apop-
tosis in CC cells (SiHa cells) by targeting Bcl-2 and 
upregulating apoptotic proteins, such as caspase-3, and 
PARP [81]. Similarly, He et al. [82] reported that miR-
187 promotes apoptosis of SiHa CC cells by suppress-
ing the expression of Bcl-2 [82]. Moreover, miR-636 is 
found to be downregulated in CC tissues and cell lines. 
Overexpression of miR-636 results in suppressed cell 
proliferation and elevated cell apoptosis. Knockdown of 
miR-636, on the other hand, is capable of reversing these 
effects on CC tumorigenesis. In addition to Bcl-2, mir-
636 is found to target cyclin-dependent kinase 6 (CDK6) 
and upregulation of CDK6 or Bcl-2 might reverse the 
inhibitory effect of miR-636 on the progression of CC. 
Therefore, CDK6/Bcl-2 are considered targets of miR-
636 for promoting CC cell [83]. Bcl2l2 (also known as 
Bcl-w), was initially classified among BCL-2 family pro-
teins, and it’s overexpression was found to shield lym-
phoid and myeloid cells from cytokine deprivation and 
γ-irradiation-induced apoptosis [84].

Through apoptosis protection of cells and promotion 
of cell survival, Bcl2l2 participates in chemoresistance 
[84–87]. In fact, Bcl2l2 is overexpressed in various cancer 
types to promote their carcinogenesis, for instance, non-
small cell lung cancer [88], gastric and colon cancers [89, 
90]. Wang et al. [91] established that upregulated Bcl2l2 
in CC tissues promotes cell survival and cisplatin resis-
tance. Furthermore, they confirmed that through the 
direct attachment of miR-214 to the 3ˊ UTR of Bcl2l2 
mRNA, it can suppress Bcl2l2 at the post-transcriptional 
level. Moreover, they suggested that enforced expression 
of miR-214 in HeLa cells could upregulate Bax as well 
as caspase-9/8/3, which were partly reversed through 
upregulation of Bcl2l2. This indicates that both extrin-
sic and intrinsic pathways are implicated in miR-214-in-
duced apoptosis [91].

With a similar structure to the BCL-2 gene, the BCL-
XL, is a MOM and nuclear membrane protein capable 
of binding to nuclear proteins and regulating the activ-
ity of transcription factors [31]. BCL-XL has higher 
expression in tumor cells in contrast to standard cells, 
and is associated with the proliferation, growth, metas-
tasis, apoptosis resistance and maintenance of stem cell 
phenotypic of tumor cells [92, 93]. A high expression 
level of Bcl-xL has been reported in CC cells (c-33a cells) 
and miR-421-transfected c-33a cells exhibit reduced 
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MicroRNA
(Expression)

Target Samples Note Ref

MiR-1258
(Down)

E2F1 In Vitro (c-33 A cells cells), In 
vivo (mice)

MiR-1258 promotes CC apoptosis by targeting E2F1. [237]

miR-519d-3p HIF-2α In vitro (HeLa cells) MiR-519d-3p enhances the apoptosis of CC under hypoxia condition by target-
ing HIF-2α.

[238]

miR-143
(Down)

HIF-1α Human (cervical cancer tis-
sues), In vitro (HeLa cells)

Ectopic expression of miR-143 increases apoptosis rate of CC cells by targeting 
HIF-1α.

[112]

miR-143
(Down)

- In vitro (CaSki cells) MiR-143 promotes the apoptosis rate in cisplatin resistance CC cells [239]

miR-18a ATM In vitro (SiHa and HeLa cells) MiR-18a enhances the radiation-induced apoptosis in CC cells by targeting 
ATM.

[240]

miR-218 - In vitro (HeLa cells) Overexpressed miR-218 promotes the radiation-induced apoptosis in CC cells. [55]
miR-218 Survivin In vitro (SiHa/DDP and HeLa/

DDP cells)
Overexpresses miR-218 induces cisplatin-resistance cervical cancer cells by 
targeting

[241]

miR-218
(Down)

Gli3 Human (CC tissues), In vitro 
(Siha cells)

MiR-218 promotes the apoptosis of cervical CC by targeting Gli3. [61]

miR-218 - In vitro (HeLa iha cells) MiR-218 aggravates sensitivity of HeLa cells to cisplatin by increasing apoptosis 
through regulating AKT/mTOR pathway.

[56]

miR-218
(Down)

IDO1 Human (cervical cancer tis-
sues), In vitro (HeLa cells)

MiR-218 induces CC cells by targeting IDO1. [57]

miR-802
(Down)

SRSF9 Human (CC tissues), In vitro 
(SiHa and HeLa cells)

MiR-802 induces CC apoptosis by targeting SRSF9. [242]

miR-182
(Down)

DNMT3a Human (CC tissues), In vitro 
(C4-II cells)

MiR-182 enhances CC cell apoptosis by targeting DNMT3a. [243]

miR-34b
(Down)

- Human (CC tissues), In vitro 
(C33a cells)

MiR-34b induces the apoptosis of CC cells. [244]

miR-34a-5p Bcl-2 In vitro (HeLa cells) Upregulated miR-34a-5p induces CC apoptosis by negatively regulating Bcl-2 
levels.

miR-503-5p
(Down)

- In vitro (SiHa and HeLa cells) LINC00460 inhibits the CC cell apoptosis by sponging miR-503-5p. [246]

miR-15a-5p
(Down)

YAP1 Human (CC tissues), In vitro 
(SiHa and C-33 A cells)

MiR-15a-5p enhances the apoptosis of CC by negatively regulating YAP1. [246]

miR-125b PIK3CD In vitro (HeLa cells) MiR-125b induces apoptosis of CC by negatively regulating PIK3CD. [247]
miR-744
(Down)

Bcl-2 Human (CC tissues), In vitro 
(SiHa and C4-1 cells)

MiR-744 promotes CC cells by negatively regulating Bcl-2. [80]

miR-211 Bcl-2 Human (CC tissues), In vitro 
(SiHa and C-33 A cells)

MiR-211 promotes the autophagy and autophagy dependent apoptosis by 
targeting Bcl-2.

[81]

miR-636
(Down)

Bcl-2, 
CDK6

Human (CC tissues), In vitro 
(CASKI cells)

MiR-636 induces the apoptosis of CC cells by positively regulating Bax and 
cleaved caspase-3 levels and negatively regulating Bcl-2 levels.

[83]

miR-187 Bcl-2 In vitro (SiHa cells) MiR-187 induces the apoptosis of CC cells by negatively regulating Bcl-2. [82]
miR-143
(Down)

Bcl-2 Human (CC tissues), In vitro 
(HeLa cells)

MiR-143 enhances the apoptosis of CC cells by decreasing the expression level 
of Bcl-2.

[105]

miR-143
(Down)

Bcl-2 Human (CC tissues), In vitro 
(SiHa and HeLa cells)

MiR-143 promotes the CC cells by targeting Bcl-2. [113]

miR-214
(Down)

Bcl2l2 Human (CC tissues), In vitro 
(C-33 A and HeLa cells)

MiR-214 enhances the apoptosis and cytotoxicity of cisplatin in cancer cells by 
targeting Bcl2l2.

[91]

miR-421 Bcl-xL In vitro (c-33a cells) MiR-421 enhances the apoptosis of CC cells by negatively and positively regu-
lating the expression level of Bcl-xL and caspase-3, respectively.

[248]

miR-7
(Down)

XIAP Human (CC tissues), In vitro 
(HeLa and C-33 A cells)

MiR-7 induces CC apoptosis by negatively regulating XIAP levels. [249]

miR-320 Mcl-1 In vitro (HeLa cells) MiR-320 induces CC cell apoptosis by negatively and positively regulating 
Mcl-1 and capspase-3, respectively.

[95]

miR-433
(Down)

FAK Human (CC tissues), In vitro 
(CaSki cells)

MiR-433 enhances CC apoptosis by negatively regulating FAK/PI3K/AKT signal-
ing pathway.

[250]

miR-433
(Down)

MTDH Human (CC tissues), In vitro 
(SiHa and HeLa cells)

Overexpressed miR-433 leads to the induction of CC cells apoptosis by target-
ing MTDH.

[76]

Table 1 Apoptotic MicroRNA in cervical cancer cells
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MicroRNA
(Expression)

Target Samples Note Ref

miR-374b JAM-2 In vitro (Siha cells) MiR-374b induces CC cell apoptosis by negatively regulating p38/ERK pathway 
through targeting JAM-2.

[251]

miR-101 - In vitro (SiHa cells) MiR-101 induces the apoptosis of SiHa cells maybe by negatively regulating 
COX-2.

[252]

miR-101 - In vitro (HeLa cells) MiR-101 promotes the apoptosis of HeLa cells maybe by decreasing the 
expression level of COX-2.

[253]

miR-140-3p
(Down)

RRM2 Human (CC tissues), In vitro 
(Siha cells)

MiR-140-3p enhances early apoptosis by positively regulating Bax and Cleaved 
caspase-3 expression levels and negatively regulating Bcl-2 levels through 
targeting RRM2

[255]

miR-140-5p
(Down)

ORC1 Human (CC tissues), In vitro 
(C33A and HeLa cells)

MiR-140-5p aggravates the apoptosis rate of CC cells by decreasing Bcl-2 and 
increasing the accumulation of c-caspase3 and cleaved PARP.

[255]

miR-17-5p TP53INP1 In vitro (C33A and HeLa cells) Overexpressed miR-17-5p induces CC cells apoptosis by targeting TP53INP1. [256]
miR-148b
(Down)

- In vitro (HeLa cells) Ectopic expression of miR-148b induces the apoptosis of CC cells by regulating 
caspase-3-dependent manner.

[257]

miR-200b RhoA In vitro (HeLa cells) MiR-200b induces the apoptosis of CC cells by targeting RhoA. [258]
miR-628–5p
(Down)

VEGF Human (CC tissues), In vitro 
(HeLa cells)

MiR-628–5p enhances the apoptosis of CC cells by negatively regulating VEGF. [259]

miR-708
(Down)

Timeless Human (CC tissues), In vitro 
(SiHa cells)

MiR-708 aggravates the chemo- sensitivity of CC cells by enhancing apoptosis 
through

[260]

miR-29a - In vitro (CaSki and C33A Cells) miR-29a triggers the apoptosis of radio-resistance CC cells. [261]
miR-29a
(Down)

DNMT1 Human (CC tissues), In vitro 
(SiHa and HeLa cells)

MiR-29a induces the apoptosis of CC cells by targeting DNMT1 and inactivation 
of NF-κB pathway.

[262]

miR-497 IGF-1R In vitro (HeLa and SiHa cells) MiR-497 aggregates the apoptosis rate of CC cells by positively regulating 
caspase-3 activity.

[263]

miR-204
(Down)

ATF2 Human (CC tissues), In vitro 
(C33A cells)

MiR-204 promotes apoptosis and inhibits autophagy by targeting ATF2 in C33A 
cells.

[160]

miR-940 - In vitro (Hela cells) Upregulated miR-940 induces CC cell apoptosis by regulating PI3K/AKT 
pathway.

miR-143 - In vitro (Hela cells) Upregulated miR-143 mediated by 5-Aminolevulinic acid photodynamic 
therapy (ALA-PDT) method leads to induction of CC cells apoptosis by nega-
tively and positively regulating Bcl-2 and Bax levels.

[264]

miR-26a-5p
(Down)

HSDL2 Human (CC tissues), In vitro 
(Hela and C33A cells)

Upregulated miR-26a-5p induces the apoptosis of Hela and C33A cells by 
targeting HSDL2.

[265]

miR-130b-5p ELK1 In vitro (Hela cells), In vivo 
(Mice)

Overexpressed miR-130b-5p induces CC cells apoptosis by negatively regulat-
ing ELK1.

[266]

miR-612 NOB1 In vitro (SiHa cell) Enforced expression of miR-612 leads to induction of SiHa cell apoptosis by 
targeting NOB1.

[267]

miR-375 IGF-1R In vitro (Caski cells) Ectopic expression of miR-375 induces apoptosis of Caski cells by targeting 
IGF-1R.

[268]

miR-139-3p NOB1 In vitro (Hela cells) MiR-139-3p enhances the cervical cancer cells by targeting NOB1. [269]
miR-338-3p
(Down)

MACC1 Human (CC tissues), In vitro 
(Hela cells)

MiR-338-3p accelerates the apoptosis of CC cells by negatively regulating 
MACC1/MAPK pathway.

[270]

miR-337-3p Rap1A Human (CC tissues), In vitro 
(Hela cells)

MiR-337-3p can induce the apoptosis of CC cells maybe by targeting Rap1A. [271]

miR-186
(Down)

Kazrin F Human (CC tissues), In vitro 
(C33A and HeLa cells)

MiR-186 accelerates the apoptosis of CC cells by inhibiting Kazrin F. [272]

miR-873-5p
(Down)

- Human (CC tissues), In vitro 
(SiHa and HeLa cells)

Upregulated miR-873-5p enhances CC apoptosis maybe by targeting ZEB1. [273]

miR-425 RAB2B Human (CC tissues), In vitro 
(DoTc2 cells)

MiR-425 accelerates the apoptosis of CC cells by targeting RAB2B. [274]

miR-634 mTOR In vitro (SiHa and HeLa cells) MiR-634 induces the apoptosis of CC cells by negatively regulating mTOR 
signaling pathway.

[275]

miR-99a-5p RRAGD Human (CC tissues), In vitro 
(HeLa, SiHa and C33A cells)

MiR-99a-5p induces apoptosis of CC cells by targeting RRAGD. [276]

miR-181
(Down)

Yin Yang 1 Human (CC tissues), In vitro 
(HeLa cells)

Upregulated miR-181 enhances the CC apoptosis by targeting Yin Yang 1. [233]

Table 1 (continued) 
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Bcl-xL expression, suppressed growth, promoted apop-
tosis, and activated caspase-3. In addition, among BCL2 
family members, MCL1 inhibits the apoptosis pathway 
through the inhibition of BAX and BAK activation [94]. 
It has been demonstrated that miR-320 induces HeLa cell 
apoptosis by negatively and positively regulating Mcl-1 
and caspase-3, respectively (Fig. 1) [95]. Overall, because 
apoptosis suppression is pivotal in cancer development 
and constitutes a main barrier for effective therapy, 
the research on miRNAs targeting multiple Bcl-2 fam-
ily members could serve as a promising target for CC 
treatment.

Radiation triggers the activation of several survival 
and death signaling molecules, mainly implicated in the 
retraining of the cell cycle, the repair of DNA damage, 
and apoptosis induced by stress responses. A result, the 
remaining viable cells become radio-resistant [96, 97] and 
will proliferate and grow in order to spread to secondary 
sites, subsequently resulting in organ failure. Recently, 
the involvement of miRNAs in promoting radiosensitiv-
ity by enhancing apoptosis has been the center of efforts 
[98] which suggests them as promising therapeutic tar-
gets for radioresistant tumor progression.

The family of miR-29, comprises three members, 
namely miR-29a, -29b, and − 29c, is capable of precipitat-
ing in the carcinogenesis and malignant transformation 

of various cancers [99–101]. However, the mechanism of 
miR-29 contribution to the elevation of radio-resistance 
in CC is yet not clarified. Downregulation of miR-29a is 
found in radioresistant CC cells (RR-CaSki cells). In fact, 
miR-29a could serve as a critical tumor suppressor, and 
it can restrict the malignant transformation process in 
CC cells [102]. Enforced miR-18a expression in CC cell 
radio-resistance including SiHa and HeLa cells, leads to 
re-sensitizing the CC cells to radiotherapy by enhanc-
ing apoptosis through targeting ATM, a key protein in 
DNA damage response. Upregulated miR-218 enhances 
the radiation-induced apoptosis in CC cells [102]. Fur-
thermore, miR-145 is established to promote apoptosis-
induced radiotherapy in CC cells. Taken together, these 
data suggest miRNAs as promising candidates implicated 
in augmenting radiosensitivity and escalating the apop-
totic effect to alleviate the radio-resistance of CC cells.

Outnumbered research has established miR-143 as a 
tumor suppressor that is downregulated in many malig-
nancies, such as CC [103–106]. Downregulation of 
miRNA-143 is in fact associated with tumor size and 
lymph node metastasis of CC [107]. Besides, miRNA-143 
participates in the chemosensitivity of several malignan-
cies and its overexpression is found to suppress CC pro-
gression and restrict migratory and invasive activity [103, 
108, 109]. Recently, Esfandyari et al. [110] confirmed 

MicroRNA
(Expression)

Target Samples Note Ref

miR-145
(Down)

HLTF In vitro (SiHa and HeLa cells) miR-145 accelerates apoptosis-induced radiotherapy in CC cells. [277]

miR-145 OCT4 In vitro (Tera cells) Upregulated miR-145 can aggravates sensitivity of CC cells to low-dose irradia-
tion by increasing the apoptosis rate through targeting OCT4.

[278]

miR-302b-3p, 
miR-302c-3p or 
miR-302d-3p

CCNO In vitro (CasKi cells) MiR-302b/c/d-3p aggravates the apoptosis of cervical squamous cell carci-
noma by targeting CCNO.

[279]

miR-543
(Down)

TRPM7 Human (CC tissues), In vitro 
(SiHa and HeLa cells)

MiR-543 enhances SiHa and HeLa cells apoptosis by targeting TRPM7. [280]

miR-100 PLK1 In vitro (Caski and Siha cells) Overexpressed miR-100 promotes CC cell apoptosis by targeting [281]
miR-129-5p SP1 In vitro (HeLa cells) Ectopic expression of miR-129-5p leads to apoptosis induction in HeLa cells by 

targeting SP1.
[282]

miR-214
(Down)

FOXM1 Human (CC tissues), In vitro 
(C33A and HeLa cells)

MiR-214 aggravates CC cells sensitivity to cisplatin by suppressing apoptosis 
through FOXM1.

[283]

Let-7a
(Down)

TGFBR1 Human (CC tissues), In vitro 
(HeLa cells)

Upregulated let-7a can promote the apoptosis of HeLa cells maybe by target-
ing TGFBR1.

[284]

miR-3929 Cripto-1 In vitro (HeLa cells), In vivo 
(mice with HeLa xenograft 
tumors)

MiR-3929 promotes CC cells apoptosis by targeting Cripto-1. [285]

miR-1284
(Down)

HMGB1 Human (CC tissues), In vitro 
(HeLa and SiHa cells)

Upregulated miR-1284 enhances the apoptosis of CC cells by targeting HMGB1. [286]

miR-504 - In vitro (SiHa cells) Upregulated miR-504 promotes the SiHa cell apoptosis and, in return, HPV E6 
protein inhibits SiHa cells apoptosis by decreasing miR-504 expression levels.

[287]

miR-22
(Down)

HDAC6 Human (CC tissues), In vitro 
(HeLa and C33A cells)

Enforcing expression level of miR-22 leads to inducing apoptosis CC cells by 
targeting HDAC6.

[288]

miR-509-3p RAC1 In vitro (C-33 A and HCC94 
cells)

MiR-509-3p induces CC cells apoptosis by targeting RAC1. [289]

Table 1 (continued) 
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that miR-143 could enhance cisplatin-induced apoptosis 
and the sensitivity of CaSki cells to lower doses through 
altering the expression of apoptosis-related genes includ-
ing Bcl-2, Bax, and caspase-9 [110]. As eluded in Fig. 1, 
miR-143 can also stimulate CC cell apoptosis through 
inhibiting HIF-1α, which can protect CC cells from irra-
diation-induced apoptosis through downregulating p53 
[111]. In this regard, Zhao et al. [112] established that 
ectopic expression of miR-143 could enhance CC cell 
apoptosis by negatively regulating HIF-1α [112]. Also, 
upregulation of miR-143 is found to inhibit HeLa cell 
proliferation and elevate apoptosis. Furthermore, Bcl-2 is 
targeted by miR-143 [105], resulting in elevated apopto-
sis rate in CC cells (SiHa and HeLa cells) [113]. Besides, 
upregulation of miR-143 expression is shown to reduce 
Bcl-2 expression while increasing Bax expression in HeLa 
cells following 5-Aminolevulinic acid photodynamic 
therapy (ALA-PDT) [114]. As well, the downregulation 
of miR-143 expression suppresses the influence of ALA-
PDT on Bcl-2/Bax protein expression [115]. In conclu-
sion, upregulated miR-143 mediated by the ALAPDT 
method results in the induction of cervical cancer cell 
apoptosis by negatively and positively regulating Bcl-2 
and Bax levels.

Anti-apoptotic MicroRNAs in cervical cancer
Among miRNAs with the ability to regulate apoptosis, 
many are identified as anti-apoptotic in CC. This distinc-
tion relies on experimental results from a particular cell 
type. As far as we know and according to the available 
literature, 28 miRNAs have been shown to inhibit apop-
tosis, suggesting they may be onco-miRs in CC (Table 2). 
For example, miR-146a, -766-5p, -205-3p, -501, -378, 
-543, -574-5p, -141-5p, and − 15a-5p levels were found to 
be upregulated in CC tissues and also elevate the apop-
tosis of CC cell lines by directly targeting TRAF6 [116], 
SCAI [117], DDI2 [118], CYLD [119], ST7L [120], BRIP1 
[121], QKI [122], BTG1 [123], and TP53INP1 [124], 
respectively. Interestingly, some miRNAs including miR-
22, -425, -204, -130b-5p, -338-3p, -181, and − 543 have 
been found to either promote or inhibit the apoptosis of 
CC cell, suggesting its dual function in cancer progres-
sion, which will be briefly discussed below.

Among the THBS protein family, thrombospondin-2 
(THBS2) is an extracellular matrix (ECM) protein that 
can regulate cell migration, apoptosis, and cytoskeleton 
after secretion from stromal fibroblasts, endothelial cells, 
and immune cells. HBS2 could suppress angiogenesis 
through controlling matrix metalloproteinases (MMPs) 
and ECM proteins [13]. MiR-1246/THBS2/ECM sig-
naling pathways seem to be implicated in CC metasta-
sis. Depending on the cancer type, the level of THBS2 
expression varies, and in CC [125], gastric cancer [126], 
and ovarian cancer [127], it appears to be downregulated. 

At the same time, it appears to be overexpressed in pul-
monary adenocarcinoma [128], and prostate cancer 
[129], suggesting that THBS2 could serve other pro-
tumoral functions. Therefore, a controversial role could 
be described for THBS2 in tumorigenesis. Recently, Zhou 
and colleagues [130] found that THBS2 and miR-20a 
expression are notably reduced and increased, respec-
tively, in CC tissues and cells and have an inverse asso-
ciation with miR-20a expression in CC tissues. Moreover, 
inhibition of miR-20a leads to suppressed proliferation, 
elevated apoptosis, and mitigated autophagy in CC cells 
[130]. Altogether demonstrated that suppressed pro-
liferation, autophagic activity, and promoted apoptosis 
are due to the downregulation of miR-20a which targets 
THBS2 in CC cells. These sheds light on the implication 
of miR-20a in CC development.

As eluded in Fig.  1, miR-1246 is able to suppress CC 
apoptosis through the THBS2/MMP signaling pathway. 
Downregulation of MMP2/9 levels and upregulation 
of the ECM are after miR-1246 knockdown, indicates 
THBS2/MMP/ECM axis as a pathway for this miRNA 
to regulate CC cell pathogenesis [131]. In addition, miR-
181a, as one of the members of the miR-181 family, 
inhibits CC cell apoptosis through negatively regulating 
the PTEN/Akt/FOXO1 axis [132].

As can be seen in Table  2, miR-181a and − 181b are 
overexpressed in CC tissues. Functionally, it has also 
been observed that miR-181b contributes to the progres-
sion of CC via suppressing apoptosis and promoting cell 
proliferation through downregulating adenylyl cyclase 
9 (AC9) in CC cells [133]. Overexpression of protein 
kinase C delta (PRKCD) can be targeted by miR-181a to 
stimulate the apoptosis resistance of CC in response to 
radiation therapy [134]. In fact, PRKCD appears to be 
critical to mounting an apoptotic response under stress 
conditions [135, 136]. Therefore, negative regulation of 
PRKCD by miR-181a mediates radio-resistance through 
enhancing cancer cell apoptosis [137]. Thus, targeting 
miR-181a could be a novel approach to sensitizing CC to 
radiation therapy. The tumor suppressor gene Phospha-
tase and tensin homolog (PTEN) encodes dual-specificity 
phosphatase [138] and comes second among frequently 
mutated genes in cancers after P53, thereby its inactiva-
tion is pivotal in tumorigenesis and tumor development 
[139]. The mechanism of PTEN for tumor suppression 
involves various pathways, such as FAK [140], the MAPK 
[141, 142], and the PI3K/AKT pathway [143, 144]. The 
PI3K/AKT pathway is considered the most critical one 
for PTEN to exerts its antioncogenic effects. As appears 
in Fig.  1, PTEN is able to inhibit PI3K/AKT signaling, 
subsequently triggering cell cycle arrest at the G1 phase 
and inducing apoptosis in cancer cells [145]. In fact, 
PTEN level in the CC tissues exhibits a downregulation 
in contrast to non-carcinoma tissues [117]. Moreover, 
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Table 2 Anti-apoptosis MicroRNA in cervical cancer cells
MicroRNA
(Expression)

Target Samples Note Ref

miR-454-3p TRIM3 In vitro (SiHa and C-33 A cells) MiR-454-3p suppresses CC cell apoptosis by targeting TRIM3. [290]
miR-425-5p AIFM1 In vitro (HeLa cells) MiR-425-5p inhibits CC cell apoptosis by targeting [291]
miR-20a
(Up)

THBS2 Human (CC tissues), In vitro (SiHa 
and HeLa cells)

MiR-20a inhibits the apoptosis and induces the autophagy of CC 
cells by targeting THBS2.

[130]

miR-1246 THBS2 In vitro (SiHa cells) MiR-1246 suppresses CC cell apoptosis by regulating THBS2/MMP 
signaling pathway.

[131]

miR-96-5p
(Up)

SFRP4 Human (CC tissues), In vitro (SiHa 
and HeLa cells)

MiR-96-5p inhibits CC cells apoptosis by targeting SFRP4. [292]

miR-27b PLK2 In vitro (CaSki and SiHa cell) HPV E7-upregulated miR-27b inhibits CC by targeting PLK2. [293]
miR-130a-3p
(Up)

RUNX3 Human (CC tissues), In vitro (SiHa 
and CaSki cells)

MiR-130a-3p inhibits cervical cancer cell apoptosis by targeting 
RUNX3.

[294]

miR-9 FOXO3 In vitro (SiHa cells), In vivo (mice) MiR-9 represses CC cell apoptosis by targeting FOXO3. [295]
miR-181a
(Up)

- In vitro (CaSKi and HeLa cells) MiR-181a inhibits CC cell apoptosis by negatively regulating the 
PTEN/Akt/FOXO1 pathway.

[132]

miR-181a
(Up)

PRKCD Human (CC tissues), In vitro 
(Me180 and SiHa cells), In vivo 
(mice)

MiR-181a represses apoptosis-induced radiotherapy by targeting 
PRKCD in SiHa and Me180 cells.

[134]

miR-181b
(Up)

AC9 Human (CC tissues), In vitro (HeLa 
and C-33 A cells)

MiR-181b inhibits CC cells apoptosis by negatively regulating expres-
sion level of AC9.

[133]

miR-886-5p
(Up)

Bax In vitro (SiHa cell) MiR-886-5p inhibits the apoptosis of cervical squamous cell carcino-
mas by negatively regulating Bax expression levels.

[296]

miR-499a SOX6 In vitro (SiHa cell) Silencing miR-499a leads to the induction of cisplatin-induced 
apoptosis of Siha cells.

[297]

miR-22-3p eIF4EBP3 In vitro (C33a and SiHa cells) MiR-22-3p suppresses the apoptosis of cervical squamous carci-
noma cells by targeting eIF4EBP3.

[298]

miR-155 LKB1 In vitro (HeLa cells) MiR-155 inhibits CC cell apoptosis maybe by targeting LKB1. [299]
miR-146a
(Up)

TRAF6 Human (CC tissues), In vitro (HeLa 
cells)

MiR-146a represses CC cells apoptosis via inducing NF-kB signaling 
through targeting TRAF6.

[116]

miR-301a
(Up)

PTEN Human (CC tissues), In vitro (HeLa 
cells)

MiR-301a inhibits the apoptosis of CC cells by negatively regulating 
PTEN.

[300]

miR-1297 - Human (CC tissues), In vitro (HeLa 
cell)

MiR-1297 inhibits Hela cells apoptosis maybe by targeting PTEN. [146]

miR-766-5p
(Up)

SCAI Human (Tissues and serum 
samples of CC patients), In vitro 
(SiHa cells)

MiR-766-5p inhibits CC cell apoptosis by targeting SCAI. [117]

miR-629 RSU1 In vitro (CaSki and SiHa cells) MiR-629 inhibits apoptosis-induced 1′S-1′-acetoxychavicol acetate 
by targeting RSU1.

[301]

miR-205-3p
(Up)

DDI2 Human (CC tissues), In vitro (SiHa 
and HeLa cells)

MiR-205-3p inhibits CC cells by targeting [118]

miR-501
(Up)

CYLD Human (CC tissues), In vitro (HeLa 
cells)

MiR-501 can inhibit CC cell apoptosis by negatively and positively 
regulating CYLD and NF-kB, respectively.

[119]

miR-378
(Up)

ST7L Human (CC tissues), In vitro (SiHa 
and HeLa cells)

MiR-378 decreases the apoptosis of SiHa and HeLa cells by targeting 
ST7L.

[120]

miR-543
(Up)

BRIP1 Human (CC tissues), In vitro (SiHa 
and HeLa cells)

Upregulated miR-543 can inhibit SiHa and HeLa cells by targeting [121]

miR-7-5p STC1 In vitro (CaSki and HeLa cells) MiR-7-5p alleviates the endoplasmic reticulum stress-mediated 
apoptosis in CaSki and HeLa cells maybe by targeting STC1.

[303]

miR-574-5p
(Up)

QKI Human (CC tissues), In vitro (SiHa 
and C-33 A cells)

Knocking down miR-574-5p leads to inducing CC cells apoptosis. [122]

miR-141-5p
(Up)

BTG1 Human (CC tissues), In vitro (HeLa 
and C-33 A cells)

MiR-141-5p inhibits the apoptosis of HeLa and C-33 A cells maybe 
by targeting BTG1.

[123]

miR-15a-5p
(Up)

TP53INP1 Human (CC tissues), In vitro (SiHa 
and HeLa cells)

MiR-15a-5p represses CC cells apoptosis by negatively regulating 
TP53INP1.

[124]
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PTEN expression shows an inverse association with miR-
301a, and transfection of miR-301a into HeLa cells inhib-
its apoptosis through reducing PTEN expression. Also, 
overexpression of miR-301a upregulates anti-apoptotic 
factors (BCL2 and MCL1), whereas it suppresses the 
levels of pro-apoptotic factors (BAD and BAX), thereby 
inhibiting CC cell apoptosis [117].

Overall, miR-301 inhibits the apoptosis of CC cells 
through negative regulation of PTEN. In contrast, over-
expression of PTEN has been established by Chen et al. 
[146] which can be targeted by miR-1297 in CC cells. 
They observed that downregulation of PTEN represses 
proliferation and suppresses apoptosis in HeLa cell, simi-
lar to miR-1297 overexpression. In return, enforced miR-
1297 expression suppresses Hela cell apoptosis, maybe by 
targeting PTEN [146]. More studies are shown in Table 2 
and Fig. 1.

Critical role of MiRNAs in regulation cervical cancer 
cell autophagy
Autophagy is described as a regulated, pivotal catabolic 
mechanism of responding to extra- or intracellular stress, 
resulting in cell survival or even autophagic cell death. 
Therefore, this major processes could occur in malignant 
cells, and is under extreme regulation of some autoph-
agy‐related genes (ATGs) [147].

Since autophagy is essential for cell survival in harsh 
situations, and the degradation of intracellular macro-
molecules (which leads to providing energy for minimal 
cell functioning in a lack of nutrients), it is challenging to 
determine the contribution of autophagy to cell survival 
or death in terms of cancer regulation. Autophagy can be 
protective in the early stages of cancer progression or act 
as a tumor suppressor through triggering pro-autophagic 
genes and suppressing anti‐autophagic ones [147, 148]. 
However, through regulating various cascades such as 
Beclin‐1, Bcl‐2, PI3K, mTORC1/C2 and p53, autophagy 
can serve as a pro‐tumor role in carcinogenesis [149]. 
In fact, miRNAs are found as critical regulators in the 
autophagy process [150, 151]. Furthermore, deregula-
tion of autophagy-related miRNAs appears to be cor-
related with various diseases, such as different types of 
cancer [152]. Several studies have reported that miRNAs 
affect CC progression by regulating autophagy. Among 
them, according to published results, we found that three 
miRNAs induce autophagy in CC cells (Table 3). In that 
regard, Wang et al. [153] established that the miR155-5p 
expression contrasted with the function of autophagic 
marker proteins (P62 and LC3) in CC tissues. In addition, 
transfection of miR-155-5p into CC cell lines enhanced 
autophagy. Furthermore, in contrast to HPV − human 
cervical tissues, HPV + samples exhibit a downregulated 
level of miR-155-5p expression and decreased autophagy 
[153, 154]. Considering the close association of high risk 

HPV infections with the occurrence of CC [50], HPV 
infection could result in a suppressed level of miR-155-5p 
which leads to decreased autophagy [153]. As eluded in 
Fig.  2 through targeting PDK1, miR-155-5p aggravates 
CC cells autophagy. In fact, PDK1 serves as a critical 
junction point for several cell signaling cascades and 
is always hyperactivated in human cancers. Therefore, 
PDK1 appears to be a promising target in cancer ther-
apy. PDK1 elevates the activity of mTOR by regulating 
the PI3K/Akt cascade, thereby suppressing autophagy. 
PDK1 suppresses cellular autophagy by elevating mTOR 
activity [155–157]. MiR155-5p promotes cell autophagy 
by suppressing PDK1 and thus suppressing mTOR activ-
ity [158]. Wang et al. [153] demonstrated that transfec-
tion of mir-155-5p in CC cells elevates autophagy activity 
while decreasing the expression of PDK1. The effect was 
reversed after transfection with miR-155-5p inhibi-
tor [153]. Therefore, miR-155-5p increases the CC cell’s 
autophagy by targeting PDK1. As mentioned above, 
miR-20a acts as an onco-miRNA and elevates CC pro-
gression through apoptosis inhibition and autophagy 
induction through targeting THBS2. Reduction of miR-
20a has shown to reduce proliferation and autophagy 
while inducing apoptosis by targeting THBS2 in CC cells. 
In contrast, miR-197 is able to inhibit autophagy by tar-
geting Ring Finger Protein 113 (RNF113A) which can 
result in suppression of CC progression [159]. In return, 
miR-204 and − 338 alleviate CC development through 
suppressing autophagy and elevating apoptosis by target-
ing Activating transcription factor 2 (ATF-2) [160, 161]. 
Considering the dual role of autophagy in tumor promo-
tion and suppression, miRNAs can regulate tumorigen-
esis by both inhibiting and inducing autophagy pathways. 
So, more studies are needed in this field.

Several autophagy-related proteins are identified to reg-
ulate multiple stages of the autophagy formation. Since 
their discovery in 1991 [162, 163], more than 40 genes 
have been identified in yeast that encode Atg proteins 
[164]. Most of the genes (e.g. Atg1-10, Atg12-14, Atg16-
18) are conserved among mammals and yeast, suggesting 
the evolutionary conservation of the autophagy process 
[165]. In between, ATG4B is critical for the formation 
of autophagosomes, thereby appear to be important in 
cancer treatment through regulating autophagy [166]. 
Generation of MAP1LC3-I through proteolytic cleavage 
of cytoplasmic MAP1LC3/LC3 (microtubule- associated 
protein 1 light chain 3) is a critical step in autophago-
some formation, which results in creating membrane-
bound MAP1LC3-II [167]. The cysteine protease ATG4B 
and its paralogs catalyze this essential step, and are also 
required to recycle MAP1LC3 from the autophago-
somal membrane [167, 168]. In that context, targeting 
ATG4B is established to enhance the chemotherapeutic 
effect in various cancer cells [169–171]. In that regard, 
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pirarubicin (THP) [172], has been introduced as an effec-
tive strategy against various tumors while exposing mini-
mum side effects [172–174]. However, most CC patients 
exhibit no sensitivity to THP treatment, which occurs 
through unknown mechanisms are not clear. Wu et al. 
[175] confirmed the resistance of CC cells to THP both 
in vitro and in vivo. In addition, they suggested that THP 
could induce a macroautophagy/autophagy response in 
CC cells, and inhibition of this autophagy elevated the 
cytotoxicity of THP. Moreover, THP elevated the mRNA 
level of ATG4B in CC cells by enhancing mRNA stability 
without affecting its transcription. As expected, miRNA 
regulation is involved in the process, as THP downregu-
lates miR-34c-5p levels which is associated with elevated 
levels of ATG4B and autophagy (Fig. 2). Upregulation of 
miR-34c-5p significantly suppresses the level of ATG4B 
and attenuated autophagy, along with elevated cell death 
and apoptosis in THP-treated CC cells. Altogether, 
miR-34-5p promotes CC cell’s sensitivity to pirarubi-
cin through inhibiting pirarubicin-induced autophagy 
by targeting ATG4B [175]. This provides new insight for 

elevating the chemotherapeutic effect of THP and further 
clinical THP therapy for CC.

Moreover, ATG12, among ATG family members that 
are associated with autophagy could be targeted and 
subsequently decreased by miR-378 in CC cells. Suggest-
ing miR-378 as an oncogene to promote metastasis and 
inhibit autophagy through targeting ATG12 in CC [176].

Recently, Tan et al. [176] observed an upregulation in 
the level of miR-378 and a downregulation in the ATG12 
level in CC tissues with lymph node metastasis in con-
trast to lymph node-negative subjects [176].

As aforementioned, autophagy prevents tumor forma-
tion. It has been established that loss of BECLIN 1, the 
master autophagic gene, results in elevated susceptibil-
ity to tumor development [177]. Moreover, autophagy 
contributes to tumor metabolism and growth during 
Ras-induced transformation and tumorigenesis [178]. 
It has been suggested that tumor suppressors modulate 
autophagy [177]. For instance, AMPK and PTEN induce 
autophagy, as well, oncogenes that activate mTOR, block 
autophagy [179]. Recently, Wang et al. [180] established 

Table 3 MicroRNA-regulated autophagy in cervical cancer cells
MicroRNA
(Expression)

Target Samples Function in 
cervical cell 
autophagy

Note Ref

miR-197 RNF113A Human (Cervical squamous 
cell carcinoma tissues), In 
vitro (CESC cells)

Promotes MiR-197 inhibits proliferation and enhances autophagy of cervical 
squamous cell carcinoma by targeting RNF113A.

[159]

miR-155-5p PDK1 In vitro (C33A, Siha and 
HeLa cells)

Promotes MiR-155-5p aggravates CC cells autophagy by targeting PDK1. [153]

miR-20a THBS2 In vitro (SiHa and HeLa 
cells)

Promotes Silencing miR-20a leads to the autophagy suppression in CC cells 
by targeting THBS2.

[130]

miR-21 PTEN In vitro (SiHa cells) Inhibits MiR-21 inhibits the autophagy and apoptosis of CC cells by target-
ing PTEN.

[235]

miR-21 PTEN In vitro (SiHa and HeLa 
cells)

Inhibits Upregulated miR-21 mediate with HIF-1α aggravates radio-resis-
tance in CC cells by inhibiting autophagy through targeting PTEN.

[303]

miR-19-3p
(Up)

PTEN Human (CC tissues), In vitro 
(SiHa and HeLa cells)

Inhibits MiR-19-3p inhibits autophagy and apoptosis of CC cells by target-
ing PTEN.

[236]

miR-9-5p
(Up)

SOCS5 Human (CC tissues), In vitro 
(SiHa cells)

Inhibits MiR-9-5p alleviates CC autophagy by decreasing autophagosome 
through targeting SOCS5.

[304]

miR-204 ATF2 In vitro (C33A cells) Inhibits MiR-204 inhibits autophagy and incudes apoptosis of CC cells by 
targeting ATF2.

[160]

miR-338
(Down)

ATF2 Human (CC tissues), In vitro 
(SiHa and HeLa cells)

Inhibits MiR-338 alleviates CC cells autophagy by activating mTOR path-
way through negatively regulating ATF2.

[161]

miR-30a - In vitro (HeLa cells) Inhibits MiR-30a decreases the autophagy of CC cells induced with Hy-
droxycamptothecin (HCPT).

[305]

miR-34-5p ATG4B In vitro (SiHa and HeLa 
cells)

Inhibits MiR-34-5p induces sensitivity of CC cells to pirarubicin by sup-
pressing pirarubicin-induced autophagy through targeting ATG4B.

[175]

miR-875-5p MDM4 In vitro (CC cells) Inhibits Silencing miR-875-5p leads to induction of the CC cells autophagy 
by targeting MDM4.

[306]

miR-224-3p FIP200 In vitro (HPV-16+SiHa, and 
HPV-18+Hela)

Inhibits MiR-224-3p suppresses CC cells autophagy by negatively regulat-
ing FIP200.

[307]

miR-378 ATG12 In vitro (HPV-16+SiHa, and 
HPV-18+Hela)

Inhibits MiR-378 inhibits the autophagy of CC cells by targeting ATG12. [176]

miR-106a LKB1 In virto (HPV-positive SiHa 
and HeLa cells)

Inhibits MiR-106a alleviates the CC cells autophagy by targeting LKB1. [308]
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that the relative expression of PTEN mRNA in CC tis-
sue samples is significantly lower than in the normal 
samples. Also, PTEN mRNA and protein levels in the 
SiHa and HeLa cells are significantly lower than those 
in the normal cells [180]. Besides, a negative correlation 
has been established between the levels of miR-19-3p 
with PTEN in CC cells. In fact, miR-19-3p is found to be 
able to target 3′-UTR of PTEN in SiHa and HeLa cells. 
Furthermore, their data confirmed that ectopic expres-
sion of miR-19-3p accelerates CC cell proliferation but 
suppresses autophagy and apoptosis through targeting 
PTEN [180]. Similarly, Peralta-Zaragoza et al. demon-
strated an inverse association between miR-21 expres-
sion and PTEN mRNA level in SiHa cells along with 
PTEN protein expression in CC cells. Besides, they found 
that miR-21 negatively regulates the PTEN gene in CC 
cells by interacting with the MRE21 recognition sites of 
the PTEN gene. Moreover, miR-21 silencing promotes 
autophagy and apoptosis of CC cells and reestablishes 
PTEN gene and protein expression. Overall, miR-21 pro-
motes cervical cancer development by inhibiting autoph-
agy and apoptosis through negatively regulating PTEN. It 
should be noted that autophagy could contribute to the 
development of radio-resistance [181]. It might elevate 
or suppress radio-resistance, depend on the cancer types 
and tumor microenvironment [181]. Song et al. [182] 
established that overexpression of miR-21 in radioresis-
tant CC is related to upregulated HIF-1α. In addition, 

upregulated miR-21 suppresses PTEN, elevates p-Akt, 
and consequently elevates HIF-1α expression, whereas 
miR-21 suppression leads to enhanced PTEN, diminished 
p-Akt, and eventually diminished HIF-1α (Fig. 2). In that 
regard, through the PTEN/Akt/HIF-1α pathway, miR-21 
suppresses autophagy, which is among potential mecha-
nisms of increasing radio-resistance in CC cells [182]. 
Overall, upregulated miR-21 mediate with HIF-1α aggra-
vates radio-resistance in CC cells by inhibiting autophagy 
through targeting PTEN. These data expand our knowl-
edge on controlling radio-resistance development in CC 
by regulating autophagy through microRNAs.

MicroRNAs effect on the ferroptosis, pyroptosis 
and anoikis in cervical cancer
Ferroptosis
Iron-dependent cell death, termed Ferroptosis, is a 
unique pathway discovered after exposure of tumor cells 
to erastin, a small-molecule chemical probe. There are 
several morphological characteristics for distinguishing 
ferroptosis from other modes of death, including frac-
tured MOM, reduced mitochondrial volume, a dimin-
ished or lack of mitochondrial crest, and a normal-sized 
nucleus without nuclear concentration [183]. In nor-
mal conditions the oxidization of polyunsaturated fatty 
acids (PUFAs) is due to the function of lipoxygenases 
such as 12-/15-lipoxygenases. However, a rapid reduc-
tion in the levels of lipoxygenase-oxidized PUFAs occurs 

Fig. 2 Cancer cell autophagy and regulatory non-coding RNAs. Regulatory microRNAs are highlighted in orange
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as a result of the lipid repair enzyme glutathione per-
oxidase 4 (GPX4) function and its cofactor glutathione 
(GSH) [184]. Inhibition of the cystine–glutamate anti-
porter (system Xc−, encompassing subunits SLC3A2 and 
SLC7A11) induces ferroptosis and results in suppressed 
GSH biosynthesis and inactivation of GPX4 [185]. There-
fore, overwhelming lipid peroxidation leads to subse-
quent cell death (Fig. 3) [186].

System XC − inhibitors, including sorafenib and sul-
fasalazine are compartmentalized as class I ferroptosis-
inducing substances [187]. RSL3, which is able to rapidly 
induce ferroptotic cell death by covalent binding and 
blocking GPX4, represents class II ferroptosis-inducing 
substances [185]. The ferroptosis suppressor protein 1 
(FSP1) is a flavoprotein that contributes to induction of 
apoptosis. Initially synthesized in mitochondria, CoQ10 
has an essential role in the mitochondrial electron trans-
port chain, and its reduced form, CoQ10H2 is a strong 
lipophilic antioxidant [188]. FSP1 recruitment to the 
plasma membrane leads to the exertion of an oxidoreduc-
tase function, reducing CoQ10. Subsequently, CoQ10H2 

strongly ceased the lipid peroxides dissemination [189]. 
Since ferroptosis can occur in response to the peroxi-
dation of membrane phospholipids possessing PUFAs 
[187], enzymes involved in the incorporation of PUFAs 
into phospholipids are essential for ferroptotic cell death. 
One example of such a critical enzyme for the execution 
of ferroptosis is acyl-CoA synthetase long-chain family 
member 4 (ACSL4) which results in the enrichment of 
long PUFAs in cell membranes. The autophagy machin-
ery components, including BECN1, ATG3, ATG4B, 
ATG5, ATG7, and ATG13, can also trigger ferroptosis 
[37, 190].

Furthermore, the reduction of erastin’s effects on fer-
roptosis due to diminished levels of intracellular ferrous 
iron is led by knockout or knockdown of the major genes 
regulating autophagy [191]. Additionally, ferritinophagy, 
a proteolytic process that mediates the delivery of fer-
ritin to autophagosomes and engenders reactive oxy-
gen species (ROS), eventually leads to ferroptosis [192, 
193]. Noteworthy, miRNA is established to regulate 

Fig. 3 Ferroptosis in cancer cells and regulatory non-coding RNAs. Regulatory microRNAs are highlighted in orange
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ferroptosis by targeting mRNAs associated with ferrop-
tosis [194–196].

Ferroptosis-associated miRNA pose several during 
tumor metastasis, for instance, in regulation of tumor 
cells, immune cells, and angiogenesis [195, 197]. For 
example, miR-506-3p elevates CC cell ferroptosis by tar-
geting CD164 and by promoting the level of MDA, lipid 
ROS, and iron [198]. Furthermore, miR-515-5p, -409-3P 
and − 375 promote ferroptosis in HeLa cells by targeting 
SLC7A11 [199].

Glutathione peroxidase 4 (GPX4) is the core regu-
lator of ferroptosis [200] which is highly regulated at 
many levels through its expression and synthesis. Tar-
geting GPX4 hold a promise in inducing ferroptosis and 
eliminating resistant tumors. In that regard, many phar-
macological therapeutics are developed to activate fer-
roptosis through targeting GPX4 in cancer cells [200]. In 
this regard, Liu et al. [201] suggested that miR-193a-5p 
can decrease CC cell viability by promoting ferroptosis 
by targeting GPX4. Besides, they found that circACAP2 
enhances CC cell proliferation and viability by positively 
regulating GPX4 expression levels through sponging 
miR-193a-5p. The expression of circACAP2 and GPX4 
is elevated, and miR-193a-5p expression is decreased 
in clinical CC samples. The expression of miR-193a-5p 
exhibits a negative association with circACAP2 and 
GPX4, whereas the circACAP2 expression has a posi-
tive association with GPX4. Also, suppression of miR-
193a-5p or upregulation of GPX4 inhibits the circACAP2 
depletion-induced lipid ROS, iron, and Fe2 + levels in CC 
cells [201]. Therefore, miR-193a-5p promotes ferroptosis 
by targeting GPX4 and serves as tumor suppressor in CC 
cells (Fig. 3).

Mounting evidence suggested a high occurrence rate 
for ferroptosis in cancer cells [202]. Sorafenib is an ago-
nist of ferroptosis and is used as the first-line of treatment 
for advanced hepatocellular carcinoma (HCC). In that 
regard, in HCC cells, deferoxamine is shown to dimin-
ish the toxic effect of sorafenib [203]. ACSLs, a family of 
enzymes that mediate fatty acid metabolism, are impli-
cated in promoting ferroptosis through producing lipid 
peroxides, thereby are considered as ferroptosis biomark-
ers [204]. Xiaofei et al. [205] established that oeanolic 
acid suppress the proliferation of CC cells by influencing 
ACSL4-dependent ferroptosis [205]. Additionally, upreg-
ulated circular RNA circEPSTI1 elevates CC growth 
through negative regulation of SLC7A11-dependent fer-
roptosis [206]. MiR-4291 as onco-miRNA contributes to 
CC development by inhibiting ferroptosis. Mechanically, 
miR-4291 suppresses ferroptosis in C33A and CaSki cells 
through negative regulation of ACSL4 expression. In 
return, circLMO1 downregulates CC growth and metas-
tasis by promoting ferroptosis through sponging miR-
4291 and positively regulating ACSL4 levels [207].

Pyroptosis
Pyroptosis, a more recently discovered PCD, is under 
the regulation of inflammatory caspases that coordi-
nate biological effects [208, 209]. Various factors trigger 
pyroptosis cell removal. For instance, activated inflam-
matory caspase trigger the removal of cells [210], plasma 
membrane pores developed by the activated inflamma-
tory caspase, result in swelling of cells resultant of water 
uptake and consequent cell lysis which occurs through 
disrupting the plasma membrane. Also, the disruption 
of membrane and leakage of cytosolic components (e.g., 
interleukin (IL)-1β and − 18) to the extracellular envi-
ronment, amplifies the local or systemic inflammatory 
influences [211, 212]. Various molecular mechanisms 
and signaling cascades are implicated in the regulation 
of pyroptosis, yet, little is known about the miRNA’s par-
ticipations to this process. However, as far as we know, 
the role of only miR-214 and miR-124 in the regulation 
of pyroptosis in CC cells has been investigated (Table 4). 
Yu et al. [213] reported that in CC individuals, miR-214 
and NLRP3 are downregulated. Also, the level of pyrop-
tosis-related genes expression, such as NLRP1/3, NLRC4, 
caspase-1, IL-18, and − 1β are suppressed in the CC tis-
sues. Their results established that enforcing the expres-
sion of miR-214 in Hela cells leads to inducing pyroptosis 
and suppresses the proliferation of CC cells by enhanc-
ing the expression of NLRP3 [213]. Similarly, miR-124 
alleviates the CC pyroptosis by targeting SIRT1 (Fig. 4) 
[214]. According to the regulatory role of miRNAs in CC 
cells may mediate pyroptosis and may provide potential 
targets against the progression of cervical cancer. How-
ever, very limited studies have been focused on the role 
of miRNAs in the regulation of pyroptosis in CC, and 
require more attention from researchers in the future.

Anoikis
The interruption of cell–cell attachment or cell-ECM 
attachment results in the formation of apoptotic cell 
death, known as “anoikis” [215]. Anoikis has been 
described as a mechanism for eliminating misplaced or 
detached cells under physiological or pathological cir-
cumstances, which eases tissue homeostasis [216, 217]. 
In tumor cells, anoikis retards cell metastasis, and in 
addition, anoikis could occur in diabetes and cardiovas-
cular disorders [216]. Similar to apoptosis, the initiation 
of anoikis occurs by the activation of the intrinsic and 
extrinsic pathways [42, 215]. Anoikis resistance takes 
place if the detached cells circumvent death signaling 
cascades, which enables the survival of cells as a conse-
quence of various changes within the cell. Bcl-2 is con-
sidered a marker of the anoikis intrinsic cascade [218]. 
Furthermore, anoikis resistance could facilitate metasta-
sis through promoting EMT [215]. Anoikis resistant cells 
exhibits malignant behaviors, such as rapid proliferation, 
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enhanced anti-apoptotic protein levels, and an EMT phe-
notype. Growing evidence has established that several 
miRNAs expose aberrant expression levels and control 
metastasis-related processes, including invasion, EMT 
or anoikis [218–220]. High expression of miR-525-5p, an 
identified tumor suppressor in many malignant tumors, 
prevents anoikis resistance and growth independent of 
anchorage in CC cells. Higher expression of miR-525-5p 
has been demonstrated to elevate Bax expression, the 
predominant pro-apoptotic protein in anoikis, and sup-
press Bcl-2 expression, which is the major anti-apoptotic 

protein in anoikis [221]. Ubiquitin-conjugating enzyme 
E2C (UBE2C), a potential oncogene, is implicated in 
tumorigenesis or tumor progression [222]. Upregulation 
of UBE2C has been established in CC individuals and cell 
lines [223, 224]. In addition, UBE2C contributes to can-
cer progression, invasion, and metastasis through induc-
ing EMT and regulating of angiogenic responses [223]. 
ZEB1/2 (zinc fnger E-box binding homeobox 1/2) are 
transcription factors that are aberrantly expressed in CC 
[225]. In fact, ZEB1/2 are identified to elevate invasion 
and EMT in CC cells and are upregulated after they are 

Table 4 MicroRNAs in regulating ferroptosis, pyroptosis, and anoikis in cervical cancer cells
MicroRNA
(Expression)

Target Samples Function in 
cervical cell

Note Ref

Ferroptosis
miR-4291 ACSL4 In vitro (C33A and CaSki 

cells)
Inhibits miR-4291 promotes cervical cancer development by 

inhibiting ferroptosis by targeting ACSL4.
[207]

miR-506-3p CD164 In vitro (C33A and Hela 
cells)

Promotes miR-506-3p promotes cervical cancer cell ferroptosis by 
targeting CD164 and by increasing the level of MDA, lipid 
ROS, and iron.

[198]

miR-193a-5p
(Down)

GPX4 Human (Cervical cancer 
tissues), In vitro (HeLa 
and SiHa cells)

Promotes miR-193a-5p enhances cervical cancer cell ferroptosis by 
targeting GPX4.

[201]

miR-515-5p, miR-409-
3P and miR-375

SLC7A11 In vitro (HeLa cells) Promotes miR-515-5p, miR-409-3P and miR-375 maybe promote 
cervical cancer cell ferroptosis by targeting SLC7A11.

[199]

Pyroptosis
miR-214 - In vitro (Hela, SiHa, and 

HCC94 cells)
Promotes miR-214 induces the pyroptosis of cervical cancer cells 

by regulating NLRP3 expression levels.
[213]

miR-124 SIRT1 In vitro (HeLa cells) Inhibits miR-124 alleviates the cervical cancer pyroptosis by 
targeting SIRT1.

[214]

Anoikis
miR-525-5p
(Down)

UBE2C In vitro (HeLa cells) Inhibition miR-525-5p enhances the anoikis of cervical cancer cells 
maybe via negatively regulating UBE2C levels.

[221]

Fig. 4 Pyroptosis pathway in cancer cells and regulatory microRNAs. Regulatory microRNAs are highlighted in orange
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directly targeted by UBE2C [226–229]. Recently, Chen et 
al. [230] demonstrated that UBE2C itself is directly tar-
geted by miR-525-5p, suggesting that miR-525-5p can 
downregulate the levels of ZEB1/2 expression. There-
fore, miR-525-5p/UBE2C/ ZEB1/2 pathway is found to 
mediate CC progression. Besides, they found that miR-
525-5p suppressed adhesion to trigger the EMT but ele-
vated anoikis to inhibit metastasis through interrupting 
UBE2C/ZEB1/2 signaling cascade [230]. Therefore, this 
data established the roles of miR-525-5p in CC metasta-
ses, which contributed to anoikis resistance and anchor-
age-independent growth, thereby suggesting miR-525-5p 
as a target for CC treatment.

Conclusion and future perspective
The promotion of cell death through microRNAs (miR-
NAs) presents a promising avenue for the development 
of anticancer therapies, particularly for solid tumors 
such as cervical cancer. Two primary strategies can be 
employed to harness the potential of miRNAs in this 
context: the first involves the therapeutic replacement 
of miRNAs that induce apoptosis in cancer cells, while 
the second focuses on the selective silencing of anti-
programmed cell death (anti-PCD) miRNAs. The reduc-
tion of anti-PCD miRNAs is crucial, as these molecules 
inhibit programmed cell death, thereby facilitating can-
cer cell survival and contributing to resistance against 
chemotherapeutic agents [231, 232].

To effectively suppress miRNA activity, the use of 
miRNA inhibitors and oligomers is a viable approach. 
Additionally, modified miRNA mimetics, such as plas-
mid or lentiviral vectors that express specific miRNA 
sequences, may enhance the function of miRNAs that 
promote cancer cell death. While restoring normal 
miRNA expression holds significant therapeutic promise, 
challenges remain due to the incomplete understanding 
of miRNA regulation and function during their biogen-
esis and in the context of tumorigenesis.

To mitigate potential adverse effects associated with 
miRNA therapies, it is essential to investigate the immu-
nogenic and cytotoxic impacts of in vivo miRNA deliv-
ery. Furthermore, the role of miRNAs within the complex 
transcription factor-like gene regulatory networks com-
plicates the feasibility of knocking down miRNAs using 
anti-miRNA oligonucleotides. Current limitations in 
the delivery and distribution systems for miRNAs pose 
additional challenges to their therapeutic application. 
Biological vectors, such as adeno-associated viruses and 
lentiviruses, can facilitate targeted delivery; however, it is 
imperative to avoid unintended off-target effects [233].

The dual role of many miRNAs as either tumor sup-
pressors or oncogenes, depending on the cellular context, 
etiology, and cancer stage, underscores the complexity of 
miRNA networks in tumorigenesis [234]. The intricate 

interplay of miRNA species derived from the 5p and 3p 
arms of pre-miRNA precursors further complicates their 
functional roles. Emerging evidence suggests that some 
miRNAs can regulate multiple forms of programmed 
cell death, making them attractive targets for overcoming 
resistance to cell death and enhancing sensitivity to che-
motherapy in cervical cancer cells [133, 134].

The ability of miRNAs to modulate oncogenes and 
tumor suppressor genes positions them as potential 
biomarkers for early diagnosis and prognosis, as well 
as therapeutic targets. As we look towards the future, 
the implications of miRNA research could be profound, 
particularly in the context of personalized medicine. 
Advances in miRNA profiling may enable the develop-
ment of tailored therapies that enhance treatment effi-
cacy while minimizing side effects. The anticipated 2024 
Nobel Prize in Medicine may further spotlight the sig-
nificance of miRNAs, potentially recognizing ground-
breaking discoveries that elucidate their mechanisms in 
cancer biology. Such recognition could catalyze increased 
funding and interest in miRNA-based therapies, ulti-
mately leading to innovative treatment strategies for solid 
tumors like cervical cancer. However, the mechanisms 
underlying miRNA action remain incompletely under-
stood, necessitating further basic research and clinical 
trials to validate their therapeutic applicability. As trans-
lational research progresses, a deeper understanding of 
miRNA dynamics and their interactions within cellular 
networks will be essential for developing effective thera-
pies for solid tumors like cervical cancer [235, 236].
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