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Abstract 

The human microbiome has always been an important determinant of health and recently, its role has also been 
described in cancer. The altered microbiome could aid cancer progression, modulate chemoresistance and signifi-
cantly alter drug efficacy. The broad implications of microbes in cancer have prompted researchers to investigate 
the microbe-cancer axis and identify whether modifying the microbiome could sensitize cancer cells for therapy 
and improve the survival outcome of cancer patients. The preclinical data has shown that enhancing the number 
of specific microbial species could restore the patients’ response to cancer drugs and the microbial biomarkers may 
play a vital role in cancer diagnostics. The elucidation of detailed interactions of the human microbiota with cancer 
would not only help identify the novel drug targets but would also enhance the efficacy of existing drugs. The field 
exploring the emerging roles of microbiome in cancer is at a nascent stage and an in-depth scientific perspective 
on this topic would make it more accessible to a wider audience. In this review, we discuss the scientific evidence 
connecting the human microbiome to the origin and progression of cancer. We also discuss the potential mecha-
nisms by which microbiota affects initiation of cancer, metastasis and chemoresistance. We highlight the significance 
of the microbiome in therapeutic outcome and evaluate the potential of microbe-based cancer therapy.
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Introduction
Human body harbours an extraordinary number of 
microbes including bacteria, fungi, yeast, archaea, proto-
zoa and viruses, collectively called as commensal micro-
biota. The term microbiota includes bacteria, fungi, 
virus and other microbes, which influence gut and sys-
temic homeostasis [1]. They affect metabolism, inflam-
mation, nerve transmission, immune function, and 

haematopoiesis. Bacteria are the most common among 
these microorganisms. It is astonishing that a human 
body of 70 kg harbours around 39 trillion bacterial cells, 
compared to just 30 trillion human cells [2]. Both com-
mensal microbiota and human body lives in harmony as 
they display symbiotic relationship [3]. The microbiota 
niche includes gut, skin, oral cavity, respiratory tract, uri-
nary tract and reproductive tract [2, 4, 5]. The microbiota 
contributes significantly to human health and any altera-
tions have been known to cause several pathological con-
ditions. Interestingly, topographical location and dietary 
intake influence an individual’s microbial population. For 
instance, people living in different locations harbour dif-
ferent set of gut microbiota, which induce distinct micro-
bial signalling pathways in them [6].

Cancer is a highly lethal and devastating disease 
with over 19 million newly diagnosed cancer cases and 
almost 10 million cancer deaths worldwide, reported in 
2022 (https://​gco.​iarc.​fr/​today/​fact-​sheets-​cance​rs). In 
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addition to the patient suffering, cancer poses tremen-
dous economic burden with remarkable healthcare costs 
[7]. While cancer is a complex, multi-step, chronic dis-
ease, that is caused by the accumulation of spontaneous 
mutations acquired during DNA replication in actively 
dividing cells, environment also impacts cancer risk 
considerably. Several risk factors associated with cancer 
include lifestyle factors, microbial infection, tobacco use, 
physical activity, diet and energy balance [8]. In addition, 
dysregulation of the gut microbiota has gained wide-
spread attention as a potential risk factor for cancer.

Recently, microbiota has been added to the list of hall-
marks of cancer, due to their capability to affect cancer 
phenotypes. The microbes are known to generate several 
metabolites such as short chain fatty acid (SCFA) and 
Tryptophan (Trp), which confer genetic and epigenetic 
changes in cells, disposing them to become cancerous [9]. 
An amplitude of literature suggests a crosstalk between 
gut microbiota and the intestinal mucosal surface of the 
host which plays a principal role in tumorigenesis [10–
12]. Microbes may increase the risk of tumorigenesis by 
inducing DNA damage via oxidative stress in the gastric 
mucosa, enhancing epithelial inflammation and disrupt-
ing the mucosal barrier [13, 14]. Dysbiosis, which sig-
nifies an imbalance in a person’s microbiota, has been 
observed in the gut of numerous cancer patients. It has 
been proposed that dysbiosis enables the microbes to 
spread to distant organ locations via systemic circula-
tion and leads to the development of chronic inflamma-
tion and immunosuppressive microenvironment. This, in 
turn, increases the risk of cancer development [15].

In addition to gut microbiota, emerging evidence high-
lights the importance of intratumoral microbiota. The 
intratumoral microbes are considered an essential com-
ponent of the tumor microenvironment (TME) [16] and 
their composition, richness, and spatial distribution vary 
among different tumors [17]. Four potential sources for 
intratumoral microbiota have been proposed: compro-
mised mucosal barriers, spread from adjacent normal 
tissues, dissemination via blood vessels, and lymphat-
ics. Understanding how these microbes colonize and 
inhabit tumor tissues remains a major area of research. 
The potential of intratumoral microbiota has been high-
lighted in great depth in recently published reviews [10, 
18, 19].

Microbiota, aging and cancer
Aging refers to progressive, time dependent deterioration 
of cellular and physiological processes. This functional 
decline is considered as the major risk factor for key dis-
eases, including cancer. The fundamental hallmarks of 
aging include genomic instability, epigenetic alterations, 
oxidative damage, telomere attrition, mitochondrial 

dysregulation, cellular senescence and disturbance of 
proteostasis [20–22]. Studies on mice aged in the same 
environment has shown that microbiota diversity and 
abundance decreases in natural aging. Older mice show a 
boost in creatine degradation, leading to muscle wasting, 
and a decline in the biotin, cobalamin biosynthesis, and 
underrepresented SOS genes associated with DNA repair 
[23]. Studies on human aging cohort indicate that a 
group of genera including Akkermansia, Anaerotruncus, 
Eggerthella, and Bilophila prominently increases with 
aging, while, abundance of Faecalibacterium, Prevotella, 
and Bacteroides was comparatively compromised in aged 
adults. An enrichment in pathobionts, which are oppor-
tunistic pro-inflammatory bacteria, has been observed in 
aged adults, that can nurture the physiological inflamma-
tion in these people [24, 25]. It has been proposed that 
make up of gut microbiota changes gradually during 
aging in humans also, despite the substantial inter-indi-
vidual heterogeneity and impact of external factors such 
as life style, diet and treatment [26, 27].

Several reports suggest that dysbiosis increases dur-
ing aging and leads to abundance of pro-inflammatory 
commensals as compared to beneficial microbes. SCFAs, 
including butyrate, can help slow down cellular aging. 
They achieve this by suppressing histone deacetylases, 
which modulates metabolic processes, boosts insulin 
secretion, and regulates immune responses [28–30]. In 
contrast, pathogenic bacterial byproducts such as LPS 
enhance cellular senescence, a hallmark of aging, by 
accelerating inflammation and increasing oxidative stress 
[31]. In addition, the toxins produced by Pseudomonas 
aeruginosa and Helicobacter pylori cause DNA damage 
and elevate oxidative stress in the host. As a result, this 
exacerbates the DNA damage response, genomic insta-
bility, and cellular senescence [32, 33].

Dysbiosis and bacterial toxins facilitate the accumula-
tion of senescent cells, DNA damage, and proinflam-
matory microenvironment in aged people. This leads to 
metabolic disturbance and creates a TME that promotes 
the survival and propagation of neoplastic cells, ulti-
mately resulting in cancer (Fig. 1) [26, 34, 35].

Cancer initiation and progression
Cancer is a complex, dynamic, and multi-step disease 
composed of heterogenous cell populations and associ-
ated TME [36]. Due to its non-linear nature and depend-
ency on multiple variables, carcinogenesis is controlled 
by numerous risk factors, indicating that each tumour is 
unique. However, a common outline of the process has 
been established by identifying the molecular events 
involved in the initiation and progression of cancer [37].

Cancer often starts with an alteration in genetic or 
epigenetic pathway in the somatic cells making them 
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tumorous, due to the presence of a carcinogen. This is 
followed by a qualitative change in the genetic traits of 
the tumor cells. This change typically leads to malig-
nancy, even though there may not be any observ-
able physical changes [38]. Genetic mutation in tumor 
suppressor gene, oncogene, DNA repair gene or cell 
cycle gene may confer growth advantages, resistance 
to death signals and thus lead to abnormal prolifera-
tion and initiation of tumors [39]. Various hallmarks 
have been found to be associated with the neoplastic 
growth stages, which a normal cell undergoes while 
becoming malignant [1]. Metabolic reprogramming 
is one such key hallmark. Cancer progression occurs 
through the different metabolic phenotypes that can-
cer cells acquire, which facilitate their rapid division, 
dissemination, and invasion into different parts of the 
body. One such metabolic characteristic is the accu-
mulation of oncometabolite, D-2-hydroxyglutarate, in 
tumors by the successive mutations of isocitrate dehy-
drogenase-1/2. This is shown to directly encourage 
cancer initiation and further progression by suppress-
ing differentiation [40]. Other metabolic activities that 
have often been found to be associated with tumours in 
cultured cancer cells include aerobic glycolysis, macro-
molecular synthesis, redox homeostasis and glutamine 
catabolism – all assisting rapid cellular proliferation 

and growth. However, tumour heterogeneity has been 
widely discovered in various studies–leading to differ-
ences in metabolic properties in separate regions of the 
tumor [41].

TME is another component that plays a vital role in 
cancer initiation and progression. It is an orchestrated 
vascularized ecosystem, which harbours cancer cells 
along with several non-cancerous cells such as immune 
cells, cancer-associated fibroblasts (CAFs), endothelial 
cells, pericytes, adipocytes, neurons and the extracel-
lular matrix (ECM) [42, 43]. Cancer cells further pro-
mote tumor-supportive niche by rewiring surrounding 
non-cancerous cells and by facilitating angiogenesis and 
modulating ECM. For instance, tumor-associated mac-
rophages (TAMs) secrete growth factors and cytokines 
to stimulate angiogenesis and invasion. Tumor cells are 
known to reprogram CAFs to secrete ECM proteins 
and vascular factors including VEGF-A, contributing to 
tumor supportive niche [42]. The ECM serves as a reser-
voir for secreted molecules, thereby enhancing intercel-
lular communication, cell adhesion, and migration [44]. 
Therefore, different components of TME contribute to 
cancer initiation, progression and migration by affecting 
various cellular processes.

Better understanding of molecular mechanisms that 
regulate cancer progression and plasticity can aid in 

Fig. 1  Aging can culminate into cancer and cancer treatment specifically leads to premature aging. Risk factors of aging and cancer include gut 
microbiome, life style factors and medication
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developing precise and targeted therapies for cancer 
treatment and prevent recurrence.

Evidence of association between microbiota 
and cancer
The most well studied direct connection between micro-
biota and cancer is the role of oncogenic viruses in 
inducing cancer such as Helicobacter pylori and Human 
Papilloma Virus acting as a causal factor for gastric ade-
nocarcinoma and cervical cancer, respectively. The stud-
ies on animal models using antibiotics have confirmed 
that microbes can promote the initiation and progres-
sion of several cancers including breast cancer [45], gas-
tric cancer [46], hepatocellular carcinoma (HCC) [47], 
colorectal cancer [48] and pancreatic ductal adenocar-
cinoma [49]. Association studies have identified critical 
microbes, which can impact cancer initiation, progres-
sion, therapeutic response, and chemoresistance in a pos-
itive or negative manner (Fig. 2) [1]. The high throughput 
DNA sequencing experiments have demonstrated the 
alteration of bacterial, viral and fungal communities of a 
human being as a trigger for carcinogenesis [50].

Analysis of gastric cancer specimens revealed greater 
microbial abundance, diversity and increased complexity 
in cancerous tissues as compared to non-cancerous tis-
sues [51]. For instance, development of oral squamous 

cell carcinoma (OSCC) is often associated with the ele-
vated enrichment of Fusobacterium spp [52]. Concur-
rently, OSCC patients were shown to display abundance 
of Fusobacterium in specific tumor sites, and reduced 
levels in saliva and oral rinse samples [53]. Notably, oral 
microbiome can also influence gut microbiota as gastric 
cancers harboured increased enrichment of microbial 
taxa associated with the oral microbiota [51].

Metagenomic sequencing helped identify the presence 
of specific microbial communities in different cancers 
(Table 1) [8]. The enrichment of Streptococcus sanguinis, 
Anaerococcus mediterraneensis, Fusobacterium nuclea-
tum, and Fusobacterium Hwasookii was observed in pri-
mary colorectal tumour samples [54]. The gut microbial 
signatures were also found to be different among breast 
cancer patients responsive to neoadjuvant chemotherapy 
(NAC) when compared with patients resistant to NAC 
[55]. In addition, HER2 + breast cancer patients exhib-
ited lower abundance of Firmicutes and higher abun-
dance of Bacteroidetes in comparison to HER2- breast 
cancer patients in a study of 37 patients [56]. In HCC, 
microbial translocation to liver has been proposed due 
to aberrant gut epithelial barrier. Several dominant phyla 
such as Bacteroidetes, Firmicutes, and Proteobacteria and 
Ruminococcus gnavus have been identified in tumor sam-
ples resected from patients of viral HCC [47]. Different 

Fig. 2  Specific microbes within the gut microbiota impacts cancer initiation, progression, metastasis and chemoresistance
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mechanisms have been proposed to be responsible for 
microbe-associated tumorigenesis including epige-
netic modulations, DNA damage, altered DNA damage 
response, dysregulated signaling pathways and modu-
lated immune response [10].

Role of microbiota in development 
and progression of cancer
Many studies have reported dual role of microbes as pro-
tumorigenic and anti-tumorigenic in cancer initiation 
and progression depending on the stage of tumor pro-
gression and functional and spatio-temporal properties 
of microbiota [57–60].

Several microbes including Fusobacterium nucleatum 
and Streptococcus gallolyticus subsp Gallolyticus are 
involved in carcinogenesis. For instance, colorectal can-
cer (CRC) has been found to be closely associated with 
Streptococcus gallolyticus, Bacteroides fragilis, Escheri-
chia coli, Enterococcus faecalis, Fusobacterium nucleatum 
and Parvimonas micra [61, 62]. These pathogens are con-
sidered to play a role in CRC tumor formation and devel-
opment as they are abundantly expressed in the gut of 

CRC patients [63, 64]. These pathogens affect CRC devel-
opment and metastasis through epigenetic mechanisms 
such as DNA methylation and histone modifications via 
producing metabolites such as short chain fatty acids [65, 
66].

The abundance and diversity of various microorgan-
isms including Porphyromonas, Neisseria, Actinomycetes, 
Streptococcus, Bifidobacteria, Bacteroides and Fusobac-
terium species have been associated with the origin and 
progression of pancreatic cancer. These microbes cause 
inflammation and immune suppression and thus affect 
tumor growth and development [67, 68]. The oral cav-
ity microbiota and Helicobacter pylori act as risk factor 
for pancreatic cancer by inducing inflammation [69]. In 
addition, microbiota can also modulate the risk of breast 
cancer. They can modulate the function of immune sys-
tem by producing metabolites, such as antibiotics, and 
by regulating bioenergetics and steroid hormone levels. 
Analysis of 16S rRNA gene sequence of human breast 
cancer tissues revealed a higher abundance of Porphy-
romonas, Lacibacter, Ezakiella, and Fusobacterium in 
advanced-stage breast tumors compared to early-stage 

Table 1  Microbial species associated with the respective cancer

Cancer type Microbes associated with increased risk Microbes associated with decreased risk References

Colorectal cancer Streptococcus gallolyticus, Bacteroides fragilis, Solo-
bacterium moorei, Fusobacterium nucleatum

[202–204]

Pancreatic cancer Porphyromonas, A. Actinomycetemcomitans Ascomy-
cota, Basidiomycota, Malassezia

[205–207]

Brain cancer /glioma Enrerobacteriaceae, Fusobacterium, Akkermansia [72, 208]

Gastric cancer Helicobacter pylori [209]

Ovarian cancer Neisseria gonorrhoeae or Chlamydia trachomatis, 
Bacteriodete, Firmicutes

[210, 211]

Lung cancer Actinomyces, Haemophilus, Streptococcus [212, 213]

Breast cancer Lactobacilli, Bacteroide fragilis, Clostridia, Fusobacte-
rium nucleatum, Escherichia coli

Lactobacillus helvecticus R389, Lactobacillus casei, 
Lactobacillus acidophilus

[127]

Cervical Fusobacterium spp, Mycoplasma genitalium, Chla-
mydia trachomatis

[214–216]

Glioblastoma Peptostreptococcaceae, Eubacterium brachy Ruminococcaceae, Anaerostipes, Faecalibacterium, 
LachnospiraceaeUCG004, Phascolarctobacterium, 
Prevotella7, Streptococcus

[217, 218]

Larynx Fusobacterium nucleatum, Streptococcus spp, Prevo-
tella spp, Helicobactor pylori

Streptococcus spp [219, 220]

Prostate Cutibacterium acnes, Shewanella, Microbacterium sp, 
Escherichia coli, Streptococcus anginosusi, Propioni-
bacterium acnesi

Botulinum toxin A, Staphylococcus aureus [220–224]

Oral squamous cell carcinoma Capnocytophaga gingivalis, Fusobacterium 
nucleatum, Carnobacterium spp, Tannerella spp, 
Parvimonas spp, Filifactor spp, Candida

Lactobacillus plantarum [225–229]

Bladder Prevotella spp, Alistipes spp, Barnesiella spp, Para-
bacteroides spp, Lachnospiracea_incertae_sedis, 
Staphylococcus spp, Parvimonas spp, Proteniphilum 
spp, Saccharofermentans spp, Klebsiella spp

Actinobacteria [230–232]

Head and neck Stenotrophomonas, Comamonadacea, Fusobacte-
rium, Peptostreptococcus

[233, 238]
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ones [70]. Fusobacterium nucleatum and Bacteroides fra-
gilis have been shown to aggravate breast cancer growth 
and metastasis by inhabiting breast tumors and promot-
ing self-renewal of cancer cells [45, 71].

Brain cancer patients harbour Enterobacteriaceae, 
Fusobacterium and Akkermansia as the major gut bac-
terial colonies but are deficient in SCFA-producing 
probiotics [72]. These microbes are believed to affect gli-
omas through immune system suppression, activation of 
inflammation, limiting cell death, and promoting angio-
genesis and invasiveness [73]. The microbes are unable to 
cross blood–brain barrier, however they release certain 
extracellular vesicles, which have the ability to cross the 
barrier and make their way into the brain [74]. Several 
studies have designed models to link these microorgan-
isms with brain cancer and predict treatment outcomes 
[73, 74].

Further instances of microbiota involvement in origin 
of other cancers include Helicobacter pylori in Gastric 
cancer [75], Fusobacterium nucleatum in colorectal car-
cinoma [76, 77], Proteobacteria in ovarian cancer [78], 
Human Papillomavirus in cervical cancer [79] and Actin-
omyces and Peptostreptococcus in lung cancer [80]. These 
species were found to be in abundance in respective can-
cers and were believed to elevate tumor susceptibility by 
modifying metabolism and immune response, enhancing 
inflammation and toxicity and altering signaling path-
ways [58, 81].

Beside these pro-tumorigenic roles of microbes, a few 
of them such as Lactobacillus, Bifidobacterium, Faecalib-
aculum rodentium, Streptococcus thermophiles have been 
observed to have anti-tumorigenic properties [82–85]. 
Generally, the mechanisms through which they inhibit 
tumor growth include modulation of the immune system, 
metabolic effects, and the mutualistic and competitive 
relationships among commensal and pathogenic bacteria 
[10, 86].

A consortium of commensal gut bacteria such as Para-
prevotella xylaniphila, Bacteroides dorei, and Parabac-
teroides distasonis can induce IFNγ production by CD8 
T cells, resist against Listeria monocytogenes infection 
and enhance efficacy of immune checkpoint inhibitors in 
mice [87]. Other bacteria, such as Pseudomonas aerugi-
nosa, Salmonella typhimurium, and Clostridium difficile, 
have demonstrated anti-tumor properties in melanoma, 
pancreatic, and breast cancer, respectively. They achieve 
this by producing toxins that inhibit proliferation, arrest 
cells in the G1-S phase, and induce apoptosis, thereby 
promoting anti-cancer activity [88–90]. Notably, Strep-
tococcus thermophilus also suppresses cell proliferation, 
elicits cell cycle arrest, enhances apoptosis of colorectal 
cells in  vitro and reduces the growth of CRC xenograft 
[85]. Additionally, gut microbiota restricts progression of 

colorectal cancer in mice by suppressing colonic lncRNA 
Snhg9 and upregulating p53 expression [91].

Microbiota and their products, like Coley toxins, have 
also been shown to confer anti-tumor immunity to the 
host [92]. Clostridium perfringens enterotoxin (CPE) 
also cause cell death in cancer cells by binding to highly 
expressed tight junction proteins claudin-3 and − 4 in 
breast, prostate and colon cancer [93–95]. A recent 
report shows enhanced effectiveness of anti-programmed 
cell death protein 1 (PD-1) therapy in colon cancer by 
targeting bacterial S100A11, which remarkably abolished 
tumour growth and infiltration of myeloid-derived sup-
pressor cells (MDSC) in the tumor site [96]. Akkermansia 
muciniphila also mitigates liver steatosis and efficiently 
abrogates the tumor growth by reducing the number of 
monocytic MDSCs and M2 macrophages in orthotopic 
Metabolic Dysfunction-Associated Fatty Liver Disease-
Hepatocellular Carcinoma (MAFLD-HCC) mouse mod-
els. This bacterium also improves the efficiency of PD1 
treatment in several MAFLD-HCC mouse models [97].

Not only microbial toxins but metabolites produced by 
microbiota also contribute to anti-tumorigenic roles of 
the microbes. Short-chain fatty acid (SCFA) is one such 
metabolite produced by commensal bacteria in the gut. 
Sodium butyrate, a well-known SCFA, abolishes tumor 
cell growth, induces cell cycle arrest, promotes apoptosis, 
and alter immune responses in non-small cell lung can-
cer [98]. Further, isobutyric acid augments the efficiency 
of anti-PD-1 immunotherapy in colon cancer mice model 
by decreasing tumour volume [99].

Tryptophan is another metabolite produced by 
microbes that can impact the progression of cancer. It is 
an essential amino acid that plays a critical role in various 
physiological processes, including protein synthesis and 
neurotransmitter production. The metabolism of trypto-
phan occurs through three primary pathways: the sero-
tonin pathway, the kynurenine pathway, and the indole 
pathway. The gut microbiota like Bacteroides, Clostrid-
ium sporogenes, Eubacterium and Ruminococcus gnavus 
significantly influences tryptophan metabolism, produc-
ing various indole metabolites that have been shown to 
impact tumor development and progression [100].

The indole pathway, unique to gut microbiota, pro-
duces metabolites such as indole-3-lactic acid (ILA), 
indole-3-propionic acid (IPA), and indole-3-acetic acid 
(IAA). These metabolites modulate the TME by affect-
ing immune responses, promoting tumor growth, and 
influencing cancer cell metabolism. Dysbiosis can disrupt 
tryptophan metabolism, contributing to cancer progres-
sion and immune evasion [101].

Recent research has highlighted the potential thera-
peutic implications of targeting tryptophan metabolism 
and indole metabolites in cancer treatment. Studies have 
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shown that indole metabolites can enhance the effective-
ness of cancer immunotherapy and chemotherapy by 
modulating the immune response and creating an unfa-
vorable environment for tumor growth. However, the 
complex interactions between gut microbiota, trypto-
phan metabolism, and tumor biology necessitate further 
research to develop standardized protocols and thera-
peutic strategies.

Presence of several microbes in TME indicates inter-
action between TME and microbiota that plays a para-
mount role in progression of cancer [102]. Fap2 protein 
of Fusobacterium nucleatum binds to TIGIT, an inhibi-
tory receptor present on all human NK cells and T cells, 
due to which it suppresses the action of NK cells, CD4+ 
and CD8+ T cells in eradicating tumors [103]. H. pylori 
interacts with macrophages in the TME and induces 
their polarization to M2-like macrophages. This causes 
a decline in the antigen presentation abilities and alter 
macrophage secretions, collectively promoting the pro-
gression of gastric cancer [104].

Intratumoral microbiota also plays a role in oncogen-
esis and tumor progression [17, 105, 106]. In a recent 
report, six bacterial genera including Fusobacterium, 
Longibaculum, Intestinimonas, Pasteurella, Limosilacto-
bacillus, and Arthrobacter were found to be enriched in 
glioma tissues. Out of these, Fusobacterium nucleatum 
was found to increase glioma proliferation and secrete 
pro-inflammatory cytokines such as CCL2, CXCL1, and 
CXCL2 [107]. An enrichment of various Bacillus species 
has been observed in metastatic breast tumors. Culture 
of breast tumor cells with Bacillus thermoamylovorans 
enhances the metastatic capabilities of these cells by 
almost three times as compared to control cells [108]. 
However, a few intratumoral microbes have also been 
reported to enhance anti-tumor immune response and 
thus inhibit tumor progression [109–111].

Microbiota and cancer metastasis
Metastasis is a key hallmark of cancer cells which require 
significant ingenuity on part of cancer cells. The later 
stages of most cancer types are often characterized by the 
onset of metastasis. It is undoubtedly the leading cause 
of mortality among cancer patients [112]. Metastasis 
involves translocation of cancer cells from the site of pri-
mary tumor to secondary sites in other organs through 
blood circulation. It involves epithelial-mesenchymal 
transition (EMT), migration, invasion, extravasation and 
colonisation at the secondary site. Metastasis is however 
a challenging process, both physically and chemically, 
for the cancer cells as they have to encounter the stiff 
extracellular matrix, fluid shear stress and immunosur-
veillance before colonizing a distant site that may have a 
very distinct physiology from the primary site of tumor 

formation. Strikingly, in all the aforementioned cellular 
processes for metastasis, intratumoral microbiota may 
play a remarkable role (Table 2).

In a recent study by Fu et al., it was reported that while 
microbiota was responsible for the tumor growth, it was 
indeed the intratumoral bacteria which played a key role 
in metastasis [113]. The treatment of tumor cells with 
antibiotics that can penetrate the cell membrane revealed 
that majority of the bacterial population in the tumor tis-
sue was intracellular. The intracellular microbes in the 
tumor belonged to the genus Staphylococcus, Lactobacil-
lus, Enterococcus, and Streptococcus. Since the microbes 
were intracellular, the metastasis of breast tumor to lung 
carried these microbes to the lung tissue. This study also 
showed that once metastasis has occurred, the micro-
bial abundance would be dependent on the target organ 
microenvironment, for instance, lung metastasis would 
aid the growth of aerobic bacteria and impede the fac-
ultative anaerobes. The intracellular microbes in tumor 
cells including Staphylococcus xylosus, Lactobacillus 
animalis, and S. cuniculi have been shown to protect the 
metastasizing cells against apoptosis induced by fluid 
stress during circulation by inhibiting RhoA and ROCK 
proteins (Fig. 3).

In a retrospective study on pancreatic cancer patients, 
it was observed that antibiotic usage for more than 48 h 
had a positive impact on the overall survival and progres-
sion free survival in metastatic patients [114]. There was, 
however, no impact of antibiotic usage on the resect-
able tumor patients. The effect on both overall survival 
and progression free survival was observed when anti-
biotic usage was combined with gemcitabine as primary 
chemotherapeutic while only progression free survival 
showed a positive impact when 5-Fluorouracil was used 
as a primary chemotherapeutic. This could most likely be 
attributed to the targeting of microbes by the antibiotic 
which could be offering resistance to the chemotherapy. 
Although, other possible reasons for better outcome with 
antibiotics could be targeting of systemic infections or 
the regulation of immunomodulatory genes like CD47 or 
STAT3.

Fusobacterium nucleatum (Fn) has been implicated to 
induce metastasis in breast, colorectal and laryngeal can-
cer [71, 115–117]. It is a common gram-negative bacteria 
present in the oral cavity and often associated with peri-
odontal diseases and halitosis [118]. Two independent 
studies revealed the metastatic role of Fn in colorectal 
cancer. Kong et al. showed that Fn activates TLR4/Keap1/
NRF2 axis which induces the expression of CYP2J2 and 
12,13-EpOME. Rubinstein et al., showed that Fn through 
Fad protein is capable of binding to E-cadherin on CRC 
cells, which leads to the activation of Wnt signalling path-
way. Fn colonises CRC cells through Fap2 protein which 
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binds Gal-GalNAc signal expressed by CRC cells [119]. 
Notably, Fn uses the same mechanism to colonize breast 
tumor too [71]. Fn was also found to be enriched in the 
laryngeal squamous cell carcinoma (LSCC) patient with 
a prior history of alcohol consumption. The enrichment 
of Fn was shown to enhance proliferation and metasta-
sis of the cancer cells [115]. In the presence of alcohol, 
Fn enhanced the expression of miR-155-5p and miR-
205-5p, which in turn inhibited alcohol dehydrogenase 
1B (ADH1B) and transforming growth factor b receptor 
2 (TGFBR2) expression. This caused the activation of 
PI3K/Akt pathway ultimately leading to epithelial-mes-
enchymal transition (EMT). The amount of Fn was also 
negatively correlated with disease free survival, thereby 
implying the potential of this bacterium in the prognosis 
and clinical management of LSCC. It can, therefore, be 
concluded that targeting Fn could be an effective treat-
ment strategy to suppress the metastasis in multiple can-
cer types (Fig. 3).

The microbes do not always promote metastasis, rather 
many microbial species are known to inhibit metasta-
sis too, thereby providing a natural way to prevent can-
cer progression. In colorectal cancer, Lactobacillus and 
Lactococcus species and their metabolites have been 
shown to have anti-metastatic effect. Nisin, a metabo-
lite secreted by Lactococcus lactis inhibits metastasis by 

suppressing the expression of MMP2F and CEA, marker 
genes for colorectal cancer metastasis [120]. The metabo-
lites from Lactobacillus plantarum YYC-3 were shown to 
mediate their anti-metastatic effect by regulating VEGF-
MMP2/9 pathway [121].

In the muscle invasive bladder cancer, the intratumoral 
microbial species were found to show strong correlation 
with the expression of EMT and ECM genes [122]. For 
instance, Oscillatoria spp showed negative correlation 
with mesenchymal markers (Vimentin, Snail, Slug and 
Twist1) but positive correlation with epithelial marker 
(E-cadherin) while Saccharomonospora viridis, E. coli 
and butyrate secreting bacteria showed opposite correla-
tion with these EMT marker genes.

Recently, Ma et  al. reported that the intratumoral 
microbiome consisted of both pro- and anti-cancer 
microbes by analysing the transcriptomic data from 
TCGA. The presence of microbes including Listeria 
monocytogenes, Methylobacterium radiotolerans, Xan-
thomonas albilineans, and Bradyrhizobium japonicum 
showed negative correlation with prostate cancer bio-
markers [123]. Methylobacterium radiotolerans JCM 
2831, in particular, showed negative correlation with 
tumor node metastasis. The presence of many bacte-
ria including Staphylococcus aureus, Paraburkholde-
ria phymatum, Pseudomonas putida and Haemophilus 

Table 2  Role of intratumoral microbiome in regulating cancer metastasis

Cancer Microbe Effect on metastasis Mode of action Model organism/cell line References

Breast Staphylococcus, Lactobacillus, 
Enterococcus, and Streptococ-
cus

Pro-metastatic Modulation of host cell 
actin network and protects 
against fluid stress during cir-
culation

Mice [113]

Larynx Fusobacterium nucleatum Pro-metastatic enhanced the expression 
of miR-155-5p and miR-205-5p, 
leading to activation of ADH1B 
and TGFBR2 PI3K/Akt

LSCC patient samples, LSCC 
cell line

[115]

Prostate Trichomonas vaginalis Pro-metastatic Production of cytokines such 
as IL-6, CCL2 and CXCL8, which 
lead to polarization of M2 
macrophages

PC3, DU145 and LNCaP cells [234]

Oral squamous 
cell carcinoma

Porphyromonas gingivalis Pro-metastatic Increase in cancer stem 
cell marker genes, CD44 
and CD133, increased MMP1 
and MMP10 and increased 
EMT regulators, Slug, Snail, 
and Zeb1. Increased vimentin 
and decrease E-cadherin

Ca9-22 cells [235, 236]

Colon Lactobacillus plantarum
YYC-3

Anti-metastatic Inhibition of MMP2, MMP9, 
and VEGFA

Caco-2 and HT-29 cells [121]

Bladder Oscillatoria Anti-metastatic Reduced EMT by regulating 
E-cadherin, Vimentin, Snail, 
Slug and Twist1

Patient sample data from TCGA​ [122]

Bladder E. coli Pro-metastatic Induces EMT Patient sample data from TCGA​ [122]

Lung Legionella Pro-metastatic Not described Patient samples [237]
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parainfluenzae correlated with the expression of many 
stem cell genes. Since the cancer stem cells are often 
associated with metastatic properties, these bacteria may 
promote metastasis [123].

The importance of intratumoral microbial species in 
metastasis have been demonstrated in other cancers too 
(Table 2). All these studies indicate that the specific tar-
geting of microbes in cancer could inhibit metastasis and 
thus serve as an important part of anti-cancer combina-
tion therapies.

Microbiota and chemoresistance
Besides the fundamental role of microbiota in different 
tumors, certain microbes have been observed to exhibit 
resistance to anti-cancer therapies. Bacterial and fungal 
microbiota has been known to contribute to chemoresist-
ance, specifically by affecting the drug metabolism and 

transport, by altering drug efficacy and cytotoxicity [124]. 
Cyclophosphamide (CTX), an anti-cancer drug for hae-
matological malignancies and solid tumors, was shown 
to modulate gut microbial composition and promote the 
transfer of specific gram-positive bacteria from the small 
intestine into secondary lymphoid organs. This causes the 
activation of pathogenic T-helper cells, thereby, promot-
ing the anti-cancer activity of CTX [125, 126]. Abolishing 
the gut microbiota, specifically, Barnesiella intestini-
hominis and Enterococcus hirae in either germ free mice 
or by antibiotic administration causes drug resistance to 
cyclophosphamide, highlighting the role of gut microbi-
ota in chemoresistance [125]. However, antibiotics have 
also been linked with increased resistance in the bacteria 
leading to counterintuitive results [59, 127].

Studies further indicate that microbiota modulation 
helps in increasing the efficiency of cancer therapies and 

Fig. 3  Mechanism of action of microbiota involved in cancer initiation, progression, angiogenesis, metastasis and chemoresistance: microbiota 
is a critical parameter for origin and progression of cancer. The cancer cells too can promote the growth of specific microbes while preventing 
the growth of others. The figure highlights a few examples of microbes regulating different hallmarks of cancer. Fusobacterium has been shown 
to regulate EMT and metastasis through miR/PI3K/Akt pathway in laryngeal squamous cell carcinoma and TLR4/Keap1/NRF2 axis in colorectal 
cancer, respectively. Staphylococcus prevents apoptosis in metastasizing lung cancer cells by inhibiting the expression of RhoA and ROCK 
proteins. Gammaproteobacteria promotes chemoresistance towards gemcitabine by converting it into an inactive form through the action of its 
enzyme, cytidine demainase in colon cancer. Pseudomonas aeruginosa produces a protein, Azurin which can prevent angiogenesis by inhibiting 
the phosphorylation of FAK and Akt protein in melanoma xenograft mice models
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promote a better prognosis via altering metabolism and 
immune response. García-González et  al. demonstrated 
that administration of E.coli impacts the efficiency of 
5-fluoro-2′-deoxyuridine (FUDR) chemotherapy in C. 
elegans by modulating metabolism [128]. Similarly, Fae-
calibacterium in melanoma patients caused massive 
immune response by increasing immune cells and anti-
gen presentation, higher infiltration of the tumor bed by 
cytotoxic CD8 + T cells during anti-PD-1 therapy [129]. It 
was proposed that microbiota may also be used as a bio-
marker to predict the therapeutic response and efficacy 
of chemo and immunotherapy in patients [64]. Ni et  al. 
have further revealed the diagnostic potential of human 
microbiota by calculating the dysbiosis index (Ddys), 
which reflects microbial disturbance in the fecal sam-
ples of HCC patients. The dysbiosis index was calculated 
based on the relative abundance of probiotic bacteria in 
comparison to harmful bacteria in fecal samples of HCC 
patients [130]. Further, using pre-clinical models, it has 
been observed that microbiota modulation by employ-
ing probiotics or microbial products can boost therapeu-
tic response and decrease tumor growth and invasion. 
Not only that, live engineered or attenuated bacteria and 
their purified products such as proteins or peptides have 
also been developed as anti-cancer agents. For instance, 
Azurin, a small protein produced by Pseudomonas aer-
uginosa, acts as a potent anti-cancer agent with higher 
affinity by inducing cancer cell toxicity and prevent-
ing angiogenesis (Fig. 3) [131, 132]. In addition, bacteria 
can be engineered to express tumor-specific antigens, 
checkpoint blocking antibodies and a linker polydopa-
mine on its surface, and display specific targeted immune 
response to tumor [133]. The tumor-targeting Salmonella 
typhimurium strain, VPN20009 was transformed to pro-
duce Violacein, which shows cytotoxic effects in  vitro 
and in  vivo [134]. Such genetically engineered bacteria 
or their products suppress cancer growth by affecting 
metabolism and defence mechanism [57].

Thus, the microbiota has great potential in developing 
more efficient cancer treatments. The microbes can also 
be engineered for specific treatment purposes. However, 
further research studies are warranted on the composi-
tion and diversity of the microbiota and their correlation 
with respect to the specific cancer.

Chemotherapy induced alterations in microbiota
Chemotherapy has been known to induce major changes 
in the gut microbiota too. The gut microbiota, in 
response, modulates the efficacy and toxicity of chemo-
therapy through metabolic flux and immunomodulation. 
In the intestine, chemotherapy can damage the mucus 
layer, thus enabling some of the intestinal microbiota to 
penetrate the lamina propria and induce immunogenic 

responses. Chemotherapy also modulates richness and 
diversity in the intestinal microbiota of colorectal can-
cer patients which can in turn influence chemothera-
peutic outcomes [135]. Cong et al. studied the microbial 
ecological networks in fecal matter to understand the 
changes in intestinal microbiota following chemother-
apy of colorectal cancer patients. They showed that in 
patients undergoing chemotherapy, the connectivity 
among the microbial networks increased by over 50% 
while the modularity decreased by over 40% in com-
parison to healthy individuals. This highlights that the 
interspecies interaction among the microbial species 
in patients undergoing chemotherapy is tightly linked 
(connectivity) but the links with similar modules have 
reduced (modularity). The inconsistency in connectivity 
and modularity further implies that there is significant 
imbalance in the microbial networks in colorectal can-
cer patients following chemotherapy. Strikingly, interac-
tions among the species were negative in nature, which 
signifies the competition or predation among microbial 
species in colorectal cancer patients undergoing chemo-
therapy. The negative links decreased significantly after 
five rounds of chemotherapy. They also found that the 
species, Fusobacterium, Bacteroides, and Faecalibacte-
rium showed correlation with the tumour markers, CEA, 
CA724, and CA242, respectively, but their abundance 
was not affected by different chemotherapy stages [135]. 
It is, therefore, quite obvious to imagine that the chemo-
therapy associated side effects could be circumvented by 
favouring the growth of specific gut microbiota. Blaustein 
et al. reported that specific microbial species which show 
resistance against chemotherapeutic drugs through bio-
transformation and not by efflux mechanisms, can alter 
the toxic effects of drugs [136]. They used a reductionist 
approach to identify the microbes which could overcome 
the negative effects of doxorubicin. Clostridium innoc-
uum, Enterococcus faecium, Escherichia coli, Klebsiella 
pneumoniae, and Lactobacillus rhamnosus were grown 
in anaerobic conditions and treated with doxorubicin. It 
was found that Escherichia coli and Klebsiella pneumo-
niae were able to resist the drug at all concentrations and 
at higher concentrations, they could transform the bioac-
tive drug. K. pneumonia was more effective drug trans-
former than E. coli. Notably, the bacterial transformation 
of doxorubicin had a positive effect on the other micro-
bial communities including Clostridium innocuum and 
Enterococcus faecium. In future, such probiotics could 
be harnessed, which promotes the protective microbi-
ota in the gut and thus prevent the gastrointestinal side 
effects of chemotherapeutic drugs. The microbiota can 
also abrogate the drug efficacy by metabolizing the drug 
into its inactive form. For instance, in colon cancer mice 
model, gemcitabine was shown to be metabolized into its 
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inactive state, 2′,2′-difluorodeoxyuridine by gammapro-
teobacterial enzyme, cytidine deaminase (Fig.  3) [137]. 
Gemcitabine is also used for pancreatic cancer and the 
study further showed that 76% of the pancreatic cancer 
patients exhibited the presence of gamma proteobacteria 
and culturing these bacteria with colon cancer cell lines 
was sufficient to make them resistant to gemcitabine. 
The enzyme, cytidine deaminase, is also expressed by 
Mycoplasma hyorhinis and its infection in tumor cell cul-
tures abrogates the effect of gemcitabine. The addition of 
deaminase inhibitor restored the anti-cancer activity of 
gemcitabine [138].

5-fluorouracil (5FU) is among the most widely used 
anti-cancer drugs. It is used in the treatment of breast 
cancer, colorectal cancer, gastric cancer, pancreatic can-
cer and stomach cancer. Its mode of action involves DNA 
damage leading to apoptosis or inhibition of RNA syn-
thesis [139]. 5FU induces intestinal mucositis through 
NFkB/MAPK pathway and is often accompanied by alter-
ations in the gut microbiota and the cytokine/chemokine 
profile [140]. 5FU reduced the abundance of firmicutes, 
proteobacteria and cyanobacteria in faeces. The fecal 
microbiota transplant from healthy mice was shown to 
reduce the severity of 5FU induced mucositis. In con-
trast, another study showed that the gut microbiota 
enhances the efficacy of 5FU. The treatment of colorec-
tal mice model with antibiotics significantly reduced the 
anti-cancer effect of 5FU. This was because the adminis-
tration of antibiotic resulted in decrease of Lactobacillus, 
Alistipes and Rikenella and increase of pathogenic bacte-
ria such as Escherichia shigella and Enterobacter [141].

Oxaliplatin forms the first line of chemotherapy for 
patients with advanced colorectal cancer. It was recently 
shown that butyrate, a metabolite produced by gut micro-
biota, could promote the anti-tumor effect of oxaliplatin. 
Butyrate was shown to activate CD8 + T-cells in an ID2-
dependent manner. In the colorectal cancer patients, the 
responders exhibited higher levels of serum butyrate in 
contrast to the non-responders. This observation implies 
that butyrate produced by the gut microbes could be the 
deciding factor for patient response to oxaliplatin [142].

Radiotherapy and microbiota
It has been shown in multiple studies that radiotherapy 
and microbiota have an intertwining relationship. While 
radiation therapy could kill beneficial microbiota, cer-
tain microbial species could also enhance the sensitiv-
ity of radiotherapy by influencing immune system of the 
patient. Fusobacterium nucleatum present in the buccal 
cavity was shown to relocate to the colorectal tumor and 
negatively impact the therapeutic efficacy of radiother-
apy. The treatment with metronidazole, and antibiotic 

against Fusobacterium, was shown to act as a radiosensi-
tizer in colorectal mice models [143].

The synthesis of butyrate by Lachnospiraceae is also 
associated with radiotherapy resistance. The butyrate 
was shown to suppress STING-activated expression of 
IFN 1 in dendritic cells by blocking the phosphorylation 
of TBK1 and IRF3. This suppression disrupted the func-
tion of cytotoxic T-lymphocytes induced by radiation, 
thereby protecting the tumour cells. The treatment with 
vancomycin eliminated Lachnospiraceae resulting in bet-
ter response to radiotherapy in cancer [144].

In a comparative study on the effect of bacteria and 
fungi on radiotherapy in induced melanoma and breast 
cancer in mice models revealed interesting insights. It 
was observed that while removing fungi improved the 
effectiveness of radiotherapy, eliminating bacteria dimin-
ished the response to radiotherapy. The knockdown 
of Dectin-1, a receptor present in immune cells which 
serve as a sensor for fungal infection, also enhanced the 
response to radiotherapy. The high expression of Dec-
tin-1 is also known to be correlated with poor survival in 
breast cancer patients [124].

Impact of intratumoral microbiota on therapeutic 
response
Emerging evidence indicate the role of intratumoral 
microbiota in modulating the efficacy of and resistance 
to anti-cancer therapy. Intratumoral administration of E. 
coli in a mouse model of colorectal carcinoma reduced 
the anti-tumor activity of Gemcitabine and enhanced 
chemoresistance by biotransforming the drug [145]. 
Incubation of cervical cancer cells with intratumoral Lac-
tobacillus iners causes resistance to chemotherapy and 
radiation by enhancing tumor metabolism and modulat-
ing lactate signalling pathway [146]. Notably, administra-
tion of Peptostreptococcus anaerobius in a mouse model 
of CRC abrogated the effectiveness of anti-PD1 therapy 
by triggering the immunosuppressive activities of intra-
tumoral MDSCs [147]. However, administration of Fuso-
bacterium nucleatum in mouse allografts and humanized 
mice model of microsatellite-stable colorectal cancers 
sensitizes tumor cells to anti-PD-1 therapy through the 
secretion of butyric acid [148]. Thus, the effectiveness 
of anti-cancer therapy can be either enhanced or dimin-
ished by intratumoral microbiota, depending on the pres-
ence of specific microbial species.

Microbiota modulation for cancer therapy
Conventional cancer therapies often pose numerous 
limitations such as the collateral damage to normal cells, 
the possibility of therapy resistance and their inability to 
fully penetrate the tumor. Thus, there is an urgent need 
to develop new and better approaches for amelioration of 
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cancer [149–151]. Literature suggests that intervention of 
the intestinal microbiota in cancer patients can potenti-
ate the current anti-cancer drug regimens such as chemo 
and immunotherapy (Table  3) [73]. It has sparked the 
interest of many researchers in bacteria-mediated can-
cer therapy. This approach utilizes bacterial components 
such as proteins, peptides and immunotoxins to target 
and colonize the specific tumor. These components pos-
sess cancer specific cytotoxic activity that led to the elim-
ination of tumor cells. This method may be combined 
with other approaches for an integrated and efficient 
treatment of cancer patients [152].

This approach was first brought to light in 1868 by Dr. 
William B. Coley, who observed cancer regression in a 
patient after a bacterial infection [153]. Later, Dr. William 
Coley administered “Coley toxins”—a cocktail of various 
bacterial strains, including Streptococcus in patients for 
tumor reduction [154, 155]. Since then, advancements in 
rDNA technology and a better understanding of the TME 
have led to identification of various obligate or facultative 
anaerobes as potential candidates for bacteria mediated 
anti-cancer therapies [151]. These bacteria, belonging to 
Clostridium, Listeria, E. coli, Salmonella and Bifidobac-
terium species, possess cellular constituents such as cell 
membranes, vesicles and others that exhibit tumor tar-
geting and tumor killing properties [156]. For instance, 
successful treatment of bladder cancer involved the use 
of Bacillus Calmetter-Guerin (BCG). It is a live, attenu-
ated strain of Mycobacterium bovis, which was admin-
istered directly into the bladder for treating transitional 
cell carcinoma [151].

Recently, Salmonella has garnered a lot of attention for 
its efficient colonization of solid and semi-solid tumors 
[157]. Salmonella promotes apoptosis after migrating 
towards tumor core from tumor edge within 48  h and 
colonizes the entire tumor mass within 72 h post injec-
tion [158]. Different strains of Salmonella also destroy 
tumor by inducing apoptosis and autophagy through 
various mechanisms including triggering immune cells 
and immune reaction of the host [149]. Among other 
salmonella strains, S. Typhimurium is widely studied 
for its tumor destroying properties [157]. In another 
independent study, researchers engineered obligate 
anaerobic S. typhimurium strain YB1 and observed sup-
pression of tumor growth by injecting this modified bac-
teria in the tumor core in neuroblastoma murine model 
[159]. Some other bacterial strains displaying inherent 
cancer cytotoxic properties include Streptomyces fra-
diae against colorectal cancer, Pseudomonas aeruginosa 
against prostate carcinoma, Clostridium novyi against 
colon carcinomas, Enterobacter cloacae against leukemia 
and Brevibacillus spp. against breast cancer [160–163]. 
Notably, supplementation of αPD-1 immunotherapy 

with Lactobacillus johnsonii increases the efficiency of 
immunotherapy via production of IPA, which alters the 
stemness of CD8+ T cells in breast, melanoma and colo-
rectal tumors [164].

The bacterial strains exhibit varied mechanisms to tar-
get cancer cells. They may target and colonize the spe-
cific tumor sites and thereby inhibit tumor progression 
or they may modulate the TME and trigger the immune 
response. Their specificity and precision, further, pre-
vents damage to the neighbouring normal tissues sur-
rounding the tumor. Moreover, they possess extensive 
motility, which helps in deeper penetration of the tumor 
and hence can even act as delivery vectors, enhanc-
ing the effect of chemotherapeutic drugs [149–152]. For 
instance, Bifidobacterium longum has been engineered to 
display WT1 protein and upon administration in mice, 
the bacterium potentiates tumor infiltration of CD4 + T 
and CD8 + T cells, cytokine production, and cytotoxic 
activity in a WT1-specific manner without any side 
effects [165]. Recombinant attenuated Salmonella strain 
SL7207 was used as a vehicle for delivery of engineered 
tumor vaccine in melanoma mice model [166]. Live bac-
teria can also be conjugated with nanoparticles to create 
an efficient drug delivery system [150].

However, bacteria mediated anti-cancer therapeu-
tics present several challenges including short half-life, 
DNA instability and intrinsic pathogenic potential of 
the microbe. These barriers can be overcome by using 
genetic engineering approaches. Genetic engineering 
has helped in deletion of some of the virulence genes of 
pathogenic strains, and thus their anti-tumor activity, 
specificity and colonization can be controlled [167]. Cur-
rently, several clinical trials are determining the effect of 
functionalized Salmonella Typhimurium strains. These 
strains have either been engineered through various 
genetic techniques or have undergone surface modifica-
tions by nanoparticles or other agents to exhibit desired 
tumor targeting and colonization [155].

Other recent strategies for microbial intervention in 
cancer therapy includes fecal microbiota transplantation, 
supplementation with probiotics and prebiotics.

Fecal microbiota transplantation (FMT) in cancer 
therapy
FMT is an emerging therapeutic approach that involves 
transferring gut microbiota from healthy donors to 
patients. Recent studies have shown promising results in 
using FMT to reshape microbial dysbiosis and potentially 
inhibit cancer progression, particularly colorectal can-
cer. CRC is usually accompanied by intestinal microbial 
dysbiosis. The administration of fecal samples from CRC 
patients to both germ-free and conventional mice made 
them develop more intestinal tumors compared to those 
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receiving fecal samples from healthy individuals. This 
finding underscores the significant role of gut microbiota 
in CRC [168].

In a study involving a CRC mouse model, researchers 
found that FMT from healthy mice significantly reversed 
gut dysbiosis in CRC mice. This led to a suppression 
of cancer progression, increased survival rates, and 
enhanced anti-cancer immune responses. The transplan-
tation resulted in a higher infiltration of immune cells like 
CD8 + T cells and NK cells, which can directly attack can-
cer cells, and reduced the number of immunosuppressive 
cells like Foxp3 + Treg cells. The modulation of inflamma-
tory cytokines was also observed, with a decrease in pro-
inflammatory cytokines (IL1a, IL6, IL12a, IL12b, IL17a) 
and an increase in anti-inflammatory cytokine IL10. This 
suggests that FMT can help in creating a more favourable 
immune environment for fighting cancer [169].

While these findings are promising, more research is 
needed to fully understand the mechanisms and to trans-
late these results into clinical practice.

Clinical trials with FMT
The potential of FMT as a cancer therapy is also 
being explored in the clinical trials. In phase-II trial 
(NCT04951583) on advanced cutaneous melanoma 
(FMT-LUMINate Trial), the safety and efficacy of FMT 
in combination with immunotherapy (ipilimumab and 
nivolumab) was evaluated in patients. It showed objective 
response rate (ORR) of 70%, with 2 complete responses 
(CR) and 12 partial responses (PR). However, immune-
related adverse events (irAEs) were common, with diar-
rhoea or colitis being the most frequent grade 3 irAE. The 
metagenomic profile showed an enrichment of Prevotella 
copri, Ruminoccocaceae and Eubacterium post-FMT in 
responders. Further, the faeces of responders one-month 
post-FMT were demonstrated to inhibit the tumor 
growth in murine models when compared with feces of 
non-responders [170].

The same trial (NCT04951583) also evaluated FMT 
treatment with pembrolizumab (immune checkpoint 
inhibitor) in patients with advanced or unresectable non-
small cell lung cancer. There were less irAEs recorded 
with NSCLC patients than in melanoma patients; indi-
cating that microbiota can show differential irAEs which 
may be attributed to the specific donor used in these tri-
als [171]. The ORR and CR of patients with NSCLC is yet 
to be published.

FMT with Nivolumab as therapy for advanced 
solid cancers was also evaluated in clinical trial 
(NCT04264975). The patients enrolled for this study 
had advanced, unresectable, or metastatic solid cancer 
which has progressed during anti-PD-(L)1 therapy. The 
FMT from the anti-PD1 responder in 13 patients with 

anti-PD-1-refractory advanced solid cancers resulted in 
significant microbiota changes and clinical benefits in 6 
patients with ORR of 7.7%. The FMT responders showed 
the presence of Prevotella merdae Immunoactis which 
could suppress tumor growth by enhancing the cytotoxic 
T-lymphocyte infiltration to the tumor site [172].

FMT has also been tested in melanoma patients who 
have not responded to PD-1 inhibitors such as pem-
brolizumab or nivolumab (NCT03341143). The patients 
received FMT from anti-PD1 responders which was then 
followed by further cycles of pembrolizumab. The com-
bination resulted in stable transformation of microbiota 
and offered clinical benefits to 6 out of 15 patients. It 
resulted in noticeable changes in the microbiota com-
position, increased CD8 + T cell activation, and reduced 
frequency of interleukin-8-expressing myeloid cells. 
CD8 + T cells are responsible for targeted killing of tumor 
cells and IL-8 expressing myeloid cells are involved in 
immunosuppression, which aids the tumor progression 
[173].

Many such clinical trials involving FMT are currently 
underway, and a brief summary of the trials, where some 
preliminary results are available, is presented in Table 4.

Probiotics
Considering the significance of microbiota in cancer, 
probiotics are being explored for promoting the growth 
of healthy gut microbiota and as a component of cancer 
therapy regimen. Their mechanism of action includes 
alteration of immunity, reduction of growth of patho-
gens, and enhance the intestinal barrier function [86]. 
A few clinical trials showed a promising outcome of 
patients after probiotics supplementation, while oth-
ers did not observe any major impact produced by pro-
biotics [174, 175]. In a recent cohort study, low and 
moderate intake of probiotics has been found to be sig-
nificantly associated with decreased risk of cancer mor-
tality [176]. Lactobacillus rhamnosus GG (LGG), is a 
probiotic, which protects mouse epithelium from radia-
tion by releasing lipoteichoic acid (LTA), which in turn 
activates pericryptal macrophages by binding to TLR2 
to secrete chemokine CXCL12. This chemokine then 
causes the migration of mesenchymal stem cells by bind-
ing to CXCR4 receptor, thus protecting epithelial stem 
cells from radiation-induced apoptosis [177]. Another 
probiotic, Prohep, which is composed of Lactobacillus 
rhamnosus GG (LGG), viable Escherichia coli Nissle 1917 
(EcN), and heat-inactivated VSL3, was used to reduce 
the tumor growth by diminishing Th17 cells and IL-17 
cytokine in a mouse model of HCC [178]. In addition to 
inhibition of cancer progression, probiotic Akkermansia 
muciniphila has been used in orchestrating liposome for 
improving pharmacokinetic profile and targeted delivery 
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of 5FU, which is a first-line chemotherapy for CRC [179]. 
E. coli as a probiotic has been engineered to express a 
collagenase and an immunotoxin to degrade the collagen 
present in TME and reduced tumor growth in breast can-
cer. The anti-tumor effects of this engineered probiotic 
have been further enhanced in combination with a chem-
otherapeutic drug, doxorubicin [180]. Another example 
of engineered probiotic includes Saccharomyces cerevi-
siae var. boulardii (Sb), a yeast with anti-cancer activity. 
The yeast was engineered to secrete an antibody that can 
bind to programmed death ligand 1 (Sb_haPD-1), which 
decreased the tumor growth and improved the immune 
cell profile and microbial composition in an ICI-refrac-
tory CRC mouse model [181]. While probiotics can offer 
benefits, they can also have adverse effects during cancer 
treatment. The therapeutic response of anti–PD-1-based 
therapy in melanoma mice models got impaired follow-
ing the supplementation of probiotics [182]. Therefore, 
due to the limited research in this field, the use of probi-
otics should be approached cautiously to prevent poten-
tial adverse effects, especially in immunocompromised 
patients.

Prebiotics
Prebiotics refer to selectively fermented ingredients 
including dietary fibers and carbohydrate polymers that 
specifically facilitate the growth and/or metabolic activ-
ity of targeted gut microbiota, alter their composition 
and confers health benefits to host [183]. Inulin, a prebi-
otic fiber not only inhibits tumor growth in colon cancer 
and NRAS mutant melanoma syngeneic mouse models 
by increasing tumor-infiltrating lymphocytes (TILs) and 
altering gut microbiota, but also augments the efficacy 
of MEK inhibitor in melanoma and overcome the drug 
resistance [184]. Ginseng polysaccharides, another prebi-
otic, boosts the antitumour response to PD-1 antibody 
in syngeneic mouse models by reducing L-kynurenine 
and kynurenine/tryptophan ratio, and by enhancing the 
valeric acid, which in turn increases the population of 
T effector cells [185]. Recently, a prebiotic gum odina—
sodium alginate conjugate was used to produce biopoly-
meric microspheres with capecitabine, which is a first 
line chemotherapy drug for colon cancer. These micro-
spheres reduce drug elimination, promote capecitabine 
concentration within tumor and thus, reduce the tumor 
growth in colon cancer mouse model [186]. Additionally, 
following irradiation, psyllium plus inulin supplementa-
tion was shown to reduce the tumor size and markedly 
hinder the tumor growth by increasing CD8+ cells and 
increasing the levels of acetate, butyrate and propionate 
in a mouse model of bladder cancer [187].

Therefore, supplementing with prebiotics and probiot-
ics may provide significant benefits when combined with 

other anti-cancer therapies, enhancing both safety and 
efficacy.

Metabolism of anti‑cancer drugs
The gut microbiota is also involved in biotransforma-
tion and metabolism of anti-cancer drugs leading to dif-
ferential absorption and bioavailability of these drugs 
[188]. During the biotransformation of drugs, the micro-
biota employs various mechanisms such as deamina-
tion, hydrolysis, demethylation, glucuronidation and 
other reactive reactions [189]. The bacterial metabolism 
was shown to be responsible for conversion of ulcera-
tive colitis prodrug sulfasalazine into its active ingredient 
5-aminosalicylic acid (5-ASA) azo and toxic by-product 
sulfapyridine [190]. Sometimes, bacterial biotransforma-
tion of drug worsens the toxic side effects of the drug as 
seen in case of irinotecan (CPT11), which is used as a pri-
mary anti-cancer drug for colorectal cancer patients. It 
gets metabolized in liver into its active ingredient SN-38, 
which targets dividing cells and therefore, is detrimental 
not only to cancer cells but also to the healthy intestinal 
epithelium. In liver, SN-38 is converted to SN-38 glucuro-
nide (SN-38G) by UDP-glucuronosyltransferases (UGTs). 
SN-38G is harmless to the intestinal epithelium, however, 
microbial β-glucuronidases, present in gut, can alter SN-
38G into SN-38 by removing glucuronide group, thus, 
resulting in severe diarrhoea as a side effect of the drug 
[190, 191]. Proteobacteria and firmicutes transform 5FU 
to its inactive metabolite dihydrofluorouracil (DHFU) 
and exhibit metabolic mechanism of drug inactivation 
[192]. Recently, Wu et  al. have shown that chitooligo-
saccharides exhibit protective potential against colorec-
tal carcinomas by reducing the density of Enterococcus, 
Escherichia-Shigella and Turicibacter and enhancing the 
growth of butyrate producing bacteria [193]. Advances 
have been made in restoring healthy or beneficial micro-
biota using targeted interventions; however, the field is 
still in its infancy and additional studies are warranted to 
uncover its true potential.

Conclusion, challenges and future perspective
The global cancer statistics clearly demonstrate that the 
overall cure and survival rates of cancer patients remain 
relatively low despite the amazing advancements in the 
development of anti-cancer therapeutics. This accentu-
ates the need for further investigation into complemen-
tary treatments, in order to extend the clinical benefits of 
anti-cancer therapy to a larger cohort of cancer patients. 
The increasing significance of the gut microbiota in can-
cer initiation, progression, metastasis, and chemoresist-
ance has received a lot of attention lately in the hunt for 
alternative cancer therapeutics [194]. For instance, an 
edible fungus, Auricularia delicate exhibits protective 
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effects in colitis-associated colorectal cancer mice model 
by modulating intestinal microbiota, inhibiting NF-kB 
pathway and reducing inflammation [195]. The patient’s 
microbiota is also reported to interact with immune 
checkpoint inhibitors used in cancer treatment, which 
ultimately influences the outcome of cancer immuno-
therapy (Table  5) [8]. Fecal microbiota transplant from 
JAX mice treated with anti-PD-L1 immunotherapy into 
Taconic mice enhanced the immunotherapy outcome. 
This was attributed to the role of Bifidobacterium. Pro-
biotic colonization of Bifidobacterium enhanced the effi-
cacy of anti-PD-L1 immunotherapy by modulating the 
activation of CD8 + T cells [196]. Further, the efficacy and 
outcome of some anti-cancer chemotherapeutic drugs 
such as oxaliplatin and cyclophosphamide depend on 
the presence of specific microbiota including gram-pos-
itive bacteria, which modify TME or increase the CD8/
TReg ratio [125, 197]. However, some chemotherapeutics 
such as irinotecan and doxorubicin cause severe adverse 
effects in intestine. Therefore, the usage of such drugs 
requires clearance of GI tract microbiota by concurrent 
treatment of specific antibiotics to lessen the drug toxic-
ity [198].

Investigators across the globe have documented modi-
fications in microbiota during cancer initiation, pro-
gression and therapy, but there exists a vast array of 
methodological heterogeneity in their experimentation 
including differences in methods of sample selection and 
collection, sample size, techniques used, quality and anal-
ysis of data. This makes it challenging to comprehend the 
role of microbiota in cancer and anti-cancer drugs with 

complete fidelity. Collection of different samples from 
same individual, contamination of samples and next gen 
sequencing techniques used for different samples have 
further added biasness and increased heterogeneity in 
the results [10, 199]. To circumvent these challenges, 
unified methodologies and stringent standard operating 
procedures (SOPs) should be developed and employed 
across globe.

The biological and ecological variations of a patient 
may also cause hindrance to the wider application of 
microbe-based anti-cancer therapy. The therapeutic 
regimens for cancer are already quite complex and drug 
resistance, drug toxicity and recurrence further adds to 
the roadblocks in cancer therapy [200]. Adding another 
complex layer of microbes to anti-cancer treatments will 
introduce multifaceted challenges to cancer therapy.

To achieve homogeneity and explore specific microbe-
associated mechanisms, future studies should focus on 
distinct microbiota stratification, creating individual 
microbe profiles for the unique microbes present in 
different individuals. In addition, specialized cell cul-
ture preclinical models like patient-derived organo-
typic tumor spheroids or stem cell derived organoids in 
3D cultures may be employed to capture the molecular 
mechanistic insight into host-microbe interactions [10].

Preclinical studies suggest that personalized dietary 
habits combined with the intake of specific micro-
biota can support good gut health. This approach may 
enhance patients’ responses to anti-cancer therapy and 
improve their overall quality of life [201]. In recent 
years, gut microbiota-based therapeutic approaches 

Table 5  Abundance of microbiota in patients responding to immunotherapy

Cancer Type of immunotherapy Abundant microbes in responders References

Melanoma Anti-PD-1 Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium [245]

Anti-PD-1 Actinobacteria phylumand theLachnospiraceae/Ruminococcaceaefamilies 
of Firmicutes

[249]

Anti-PD-1 Ruminococcaceae family [129]

Hepatocellular carcinoma Anti-PD-1 antibody Akkermansiamuciniphila and Ruminococcaceae spp. [250]

Epithelial tumors Anti-PD-1 Akkermansiamuciniphila [241]

Colorectal cancer Regorafenib and Toripalimab Fusobacteriota and decreased Proteobacteria phylum in non-responders [251]

Gastrointestinal cancer Anti-PD-1/PD-L1 Prevotella, Ruminococcaceae, and Lachnospiraceae [252]

Lung cancer Anti-PD-1
PD-L1
ICIs

Escherichia, Akkermansia, Shigella, Olsenella, Veillonelladispar, Neisseria, Faecali-
bacterium

[253–255]

Anti‐PD‐1 antibodies Desulfovibrio, Actinomycetales, Bifidobacterium, Odoribacteraceae, Anaerostipes, 
Rikenellaceae, Faecalibacterium, and Alistipes

[256]

Anti‐PD‐1 antibodies Alistipes putredinis, Bifidobacterium longum, Prevotella copri [257]

PD-1 inhibitor Enterococcal prophage [258]

Breast cancer PD-1, PD-L1, ICIs Bifidobacterium longum, Collinsela aerofacience [241, 259]

Gastric cancer PD-1, PD-L1 Prevotella, Ruminococcacea, Lachnospiracea [252]

Glioblastoma Viroimmunotherapy Bifidobacterium and Akkermansiain treated mice [260]
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have shown a lot of promise in improving the efficacy 
and reducing the adverse effects of anti-cancer ther-
apy in cancer patients, thus encouraging the usage of 
microbiota-based precision medicine.

Despite the evidence of microbiota modulation 
in cancer patients, clinical interventions targeting 
microbes have not yet reached cancer patients due to 
individual variability in genetics, age, diet, sex, geog-
raphy and microbial sensitivity. Therefore, more pre-
clinical and clinical trial-oriented research is warranted 
for the development of a comprehensive approach that 
can integrate microbiota modulation strategy with the 
existing anti-cancer therapies. Such an approach will 
foster the development of precise and effective cancer 
therapies.
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