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Introduction
The low-density lipoprotein receptor-related protein 
(LRP) family comprises multiple members, including 
LRP1, LRP1b, LRP2, LRP4, LRP5/6, and LRP8. These 
transmembrane receptors are expressed on the cell sur-
face and mediate diverse biological functions. Although 
LRPs have been extensively studied in oncology, their 
precise mechanisms of action in tumorigenesis remain 
largely elusive.

Preclinical studies suggest that LRP1 may attenu-
ate cancer cell aggressiveness by downregulating matrix 
metalloproteinases (MMPs) and suppressing β-catenin 
signaling [1–4]. Additionally, LRP1 has been implicated 
in modulating cancer progression via the ERK1/2 path-
way [4]. In contrast, LRP4 appears to promote tumor 
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Abstract
The low-density lipoprotein receptor-related protein (LRP) family is a group of cell surface receptors that participate 
in a variety of biological processes, including lipid metabolism, Wnt signaling, and bone metabolism. miRNAs are 
small non-coding RNA molecules that regulate gene expression and play a role in many biological processes, 
including the occurrence and development of tumors. Accumulating evidence demonstrates that LRP members 
are modulated by miRNAs across multiple cancer types, influencing key oncogenic processes—including tumor 
cell proliferation, apoptosis suppression, extracellular matrix remodeling, cell adhesion, and angiogenesis. The 
LRPs, miRNAs, their upstream lncRNAs, and downstream signaling molecules often form complex signaling 
pathways to regulate the activity of tumor cells. However, the tissue-specific roles and mechanistic underpinnings 
of these pathways remain incompletely understood. When examining the emerging concept of the interaction 
between miRNAs and LRPs, we emphasize the significance of these complex regulatory layers in the initiation and 
progression of cancer. Collectively, these findings are critical for advancing our understanding of the role of the 
LRPs family in the occurrence and development of tumors, as well as for the development of new strategies for 
cancer treatment.
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growth, migration, and invasion in gastric cancer (GC) 
and papillary thyroid cancer (PTC), likely through acti-
vation of the PI3K/AKT pathway [5, 6]. LRP5, a single-
pass transmembrane coreceptor of the canonical Wnt 
signaling pathway, plays a pivotal role in tumorigenesis. 
By binding to Wnt ligands, LRP5 activates the Wnt/β-
catenin signaling cascade through inhibition of GSK-3β, 
thereby promoting cell proliferation, differentiation, and 
epithelial-to-mesenchymal transition (EMT)– key pro-
cesses driving primary tumor formation in various solid 
cancer [7]. Accumulating evidence demonstrates that 
LRP5 enhances tumorigenesis in GC [8] and in sporadic 
colorectal cancer [9], while also facilitating migration in 
ovarian cancer [10] and prostate cancer (PC) [11].

LRP6 is significantly upregulated in multiple malignan-
cies, including hepatocellular carcinoma (HCC), retino-
blastoma, breast cancer (BC), and prostate cancer (PC) 
[12, 13]. Similar to LRP5, LRP6 plays a crucial role in 
aberrant Wnt signaling activation. Furthermore, emerg-
ing evidence indicates that LRP6 contributes to cancer 
progression through alternative pathways, including the 
CXCL12/CXCR4 axis, KRAS signaling, and mTORC1-
mediated regulation of oncogenic processes [14].

Notably, LRP8 overexpression has been identified 
across various cancer types, such as non-small cell lung 
cancer (NSCLC) [15], Triple-negative breast cancer 
(TNBC) [16], osteosarcoma [17], GC [18], ovarian cancer 
[19] and its elevated expression levels have been notably 
linked to adverse clinical and pathological characteris-
tics as well as an unfavorable prognosis. LRP8 appears 
to exert its oncogenic effects through multiple molecular 
pathways across various tumor types. Mechanistically, 
LRP8 induces ERK1/2 phosphorylation to promote cell 
cycle progression [20], while simultaneously potentiat-
ing Wnt signaling-mediated β-catenin accumulation [21]. 
Additionally, LRP8 activates STAT3 phosphorylation and 
subsequent nuclear signaling transduction, further con-
tributing to its tumorigenic potential [17].

MicroRNAs (miRNAs) are small non-coding RNAs 
that post-transcriptionally regulate gene expression 
through complementary binding to the 3’ untranslated 
region (3’ UTR) of target mRNAs. This interaction typi-
cally induces mRNA degradation or translational repres-
sion, effectively silencing gene expression [22, 23]. As key 
epigenetic regulators, miRNAs play critical roles in vari-
ous cellular processes and are particularly implicated in 
tumorigenesis, cancer progression, and clinical outcome 
prediction. Notably, global miRNA downregulation has 
been recognized as a hallmark feature of human malig-
nancies [24, 25]. Emerging evidence indicates that multi-
ple miRNAs regulate LRP family members during tumor 
progression. However, the precise regulatory mecha-
nisms and functional relationships between specific 

miRNAs and individual LRP members remain to be fully 
elucidated and warrant further investigation.

The roles of miRNA-regulated LRPs in 
gastrointestinal tract cancers
Colorectal cancer
The expression of LPR1 in colon cancer has been first 
discovered in 2007, It mainly expresses in stromal fibro-
blast and at the invasion front. With increasing tumor 
stages, the expression of LRP1 was decreasing in that 
study [26]. A reduction in LRP1 levels independently 
forecasts inferior overall survival (OS) and progression-
free survival (PFS) in colon cancer patients [27]. It serves 
as a predictive indicator for the recurrence of colorectal 
cancer as well [28]. In contrast to normal colonic mucosa 
and stroma, LRP1 expression is markedly reduced in 
adenocarcinoma cells, a phenomenon partly attributed 
to mutations within the LRP1 gene. Despite the presence 
of numerous CpG islands in the promoter region of the 
LRP1 gene, the methylation status of this region remains 
relatively low. So, the low expression of LRP1 is not 
caused by methylation [27], but by other epigenetic pre-
transcriptional processes such as miRNAs. In HCT116 
cells, the expression of the LRP1 protein is reduced by 
miR-103/107 mimics, while treatment with inhibitors 
targeting miR-103 and miR-107 leads to the restora-
tion of LRP1 protein levels. Doxorubicin (Dox) at lethal 
doses upregulates miR-103/107 through the p53 pathway, 
leading to the suppression of The translation of LRP1 
is directly modulated by targeting its 3’ UTR, which in 
turn results in cell death. Since LRP1 is the target gene 
of P53, the p53 is necessary for LRP1 expression. The 
p53-mediated miRNA regulatory pathway functions as a 
feedback loop that inhibits the translation of LRP1 tran-
scripts, thereby promoting cell death [29]. Meanwhile, 
p53 can regulate HIF-1 and tumor angiogenesis through 
the transcriptional regulation of miR-107 in colon can-
cer [30]. miR-107 facilitates the growth, migration and 
invasiveness of colon cancer cells and suppresses their 
apoptosis through the miR-107-PRE3/4 pathway [31–33]. 
Furthermore, miRNA-107 has been identified as a down-
stream effector of the long non-coding RNA (LncRNA) 
MIR503HG [31] and circMETTL3 [33] in colon can-
cer (Fig. 1A). miR-103 shows higher expression levels in 
Pancreatic Cancers (PC) tissue than adjacent normal tis-
sues [34]. Additionally, various research has highlighted 
the significance of miR-103/107 as a promoter of cancer 
progression [35–37]. However, some studies indicate that 
miR-103 may play different roles in tumor. By regulating 
G1/S transition, miR-103 inhibited intestinal crypt cells 
proliferation and survival [38]. miR-103 exhibits substan-
tial downregulation in the blood samples of patients with 
early-stage colon cancer and may serve as a potential bio-
marker for the recurrence of this condition. miR-103 may 
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play different roles in different types of specimens, which 
needs more experiments to prove [39].

Growing evidence underscores the pivotal function 
of LPR6 in colorectal cancer (CRC). Overexpression 
of LPR6 is observed in both colorectal cancer cell lines 
and in malignant human tissues [40]. LRP6 facilitates the 
invasive and metastatic capabilities of CRC by modulat-
ing cytoskeletal dynamics [41]. CD44 is overexpression in 
CRC and have a prognostic value. It is essential for the 
activation and proper membrane targeting of LRP6, func-
tioning as a modulator within the Wnt/β-catenin signal-
ing pathway [42]. LRP6 serves as a co-receptor for Wnt 
ligands, playing an indispensable role in the transmission 
of Wnt signals [43]. miR-92a has risen to prominence as a 
potential diagnostic indicator for CRC, as noted in refer-
ence [44]. This microRNA is known to stimulate cell pro-
liferation [45], as well as the migration and invasiveness 
of CRC cells [46]. The level of miR-92a in tumor tissues 
correlates significantly with the likelihood of lymph node 
metastasis in CRC patients [47]. miR-92a induces stem 
cell-like characteristics in colorectal cancer cells through 
the stimulation of the Wnt/β-catenin signaling [48]. miR-
92a induces the suppression of DKK3 through the inter-
action with Myc on the 3’UTR.DKK3 suppressed Wnt 
signaling by inhibiting the LRP6 levels. So miR-92a indi-
rectly promoted the expression of LRP6 in CRC. LRP6, 
Wnt, Myc, and miR-92a are interconnected in a posi-
tive feedback loop that includes the inhibition of DKK3 
in CRC [49]. It is shown that MALAT1 as a diagnostic, 
prognostic, metastases and therapy biomarker for CRC 
[50]. MALAT1 enhances the proliferation, invasion, and 
migration of CRC cells [51], while also diminishing their 
apoptosis and drug responsiveness [52], and boosting 
their tumorigenic potential [53] by modulating various 

signaling pathways and miRNAs [54]. Research has dis-
closed that MALAT1 is physically linked to the miR-15 
family, which suppresses LRP6 expression by binding to 
the3’UTR of the LRP6 mRNA. This interaction augments 
the β-catenin signaling, resulting in increased transcrip-
tion of downstream target genes such as RUNX2 [55]. 
miR-487b is downregulated in NSCLC tumor cell lines 
and reported as a Wnt inhibitors [56]. miR-487b acts as 
an oncosuppressor in CRC primarily by targeting key 
oncogenes including MYC, SUZ12, and KRAS [57]. miR-
487b exerts a suppressive influence on the proliferation 
and invasive capabilities of CRC cells. It is found to be 
under expressed in CRC liver metastasis and serves as 
an independent prognostic indicator for 5-year OS. miR-
487b diminishes the activity of the KRAS signaling path-
way and curbs the WNT/β-catenin pathway by directly 
targeting LRP6 in CRC [58](Fig. 1B).

Pancreatic cancer
LRP1, a substantial multifunctional receptor on the 
cell surface, is found in pancreatic ductal adenocarci-
noma (PDAC). Research indicates that elevated levels 
of LRP1 correlate with diminished survival rates and 
increased invasiveness in pancreatic adenocarcinoma 
[59]. It serves as a receptor for eHSP90α, facilitating its 
role in promoting metastasis through the activation of 
the AKT signaling pathway [59, 60]. In pancreatic can-
cer, PAI-1 enhances the malignant phenotype of can-
cer cells through the LRP-1/ERK/c-JUN pathway [61]. 
Other studies have reported the tumor inhibitory effect 
of LRP1. For instance, the reduction in expression of the 
MIF has been shown to slow the growth of PDAC cell 
xenografts and to suppress cell proliferation under both 

Fig. 1 The miRNA/LRPSs axis in Colorectal cancer. (A) Under various stress conditions, LRP1, p53, and miR-103/107 constitute a feedback regulatory loop, 
modulating the apoptosis of colorectal cancer cells. Oncogenic lncRNAs and circRNAs repress miR-103/107, thereby enhancing LRP1 expression. (B) LRP6, 
miR-92, and DKK3 form a positive feedback loop in colorectal cancer, synergistically with oncogenic lncRNAs, to promote LRP6 expression. This enhance-
ment facilitates increased invasion, metastasis, and chemoresistance
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normoxic and hypoxic conditions. This regulatory effect 
is mediated by the MIF-p53-LRP1-uPAR signaling.

miR-429 belonged to miR-200 gene family it is located 
in the hypermethylated region of chromosome 1, and is 
low expressed in a variety of tumor cells [62]. Numer-
ous investigations have uncovered the modulatory func-
tion of miRNA-429 in PDAC. miR-429 can be related to 
poor outcome of PDAC patients [63, 64]. miR-429 signifi-
cantly suppresses cell viability and invasion of the PaCa-2 
and BxCP3 cells by NT-3 [65]. miR-429 also suppresses 
the growth of PANC1 and SW1990 cell lines in vitro by 
directly targeting TBK1 [64]. miR-429 is negatively reg-
ulated by OIP5-AS1. It suppressed PDAC cell growth, 
migration and reversed EMT process by targeted to 
FOXD1 and inhibited ERK pathway [66, 67]. LRP1 were 
predicted to be target genes of miR-429 in PDAC [63]. 
As a gene targeted by miR-429, LRP1 could potentially 
serve as a biomarker for the clinical diagnosis of PDAC 
(Fig. 2A).

LRP5 is a surface protein on cells that facilitates the 
internalization of ligands. It plays a role in enhanc-
ing the canonical Wnt signaling pathway within cells 
and is crucial for insulin secretion triggered by glucose 
[68–70]. LRP5 has been proved overexpressed in meta-
static pancreatic endocrine neoplasms as compared with 
non-metastatic pancreatic endocrine neoplasms [71]. 
LRP5/6 has been recognized as a target substrate for 
CDK14 in vivo [72]. The expression of CDK14 is nota-
bly increased in PDAC tissue samples. Phosphorylation 
of LRP5/6 by CDK14 is a crucial factor in the activa-
tion of the Wnt signaling pathway. In PDAC, miR-26b 
directly targets CDK14, suppressing its expression, along 
with the expression of phosphorylated LRP6. This leads 
to a reduction in the aggressiveness of cancer cells and a 
decrease in tumor growth both in vitro and in vivo [73]. 
miR-194 suppresses the expression of CDK14 by directly 
targeting it, thereby significantly reducing the protein 
levels of phosphorylated LRP6. This action results in the 
modulation of PDAC cell proliferation and migration 
[74]. Concurrently, the H19 modulates miR-194, which 
in turn has an antagonistic effect on the aforementioned 
factors. miR-194 has been correlated with the overall 
survival rates of pancreatic cancer patients [75, 76]. In 
contrast to the aforementioned research findings, over-
expression of miR-194 may promote tumor growth and 
local invasion in an orthotopic pancreatic cancer mouse 
mode [77] (Fig.  2B). At present, there is no research to 
confirm whether LRP5/6 is directly regulated by miR-194 
or miR-26b, and the role of miR-26b, miR-194 and LRP6 
in pancreatic cancer still require further investigation.

Significant increases in FGD5-AS1 expression is 
observed in Pancreatic Cancers [78]. Elevated levels 
of FGD5-AS1 expression are associated with an unfa-
vorable prognosis in patients with Pancreatic Cancers. 

FGD5-AS1 exhibits tumor promoting activities by acti-
vated STAT3/NF-κB signaling pathway [79]. FGD5-AS1 
promotes cell proliferation and migration by sequester-
ing miR-520a-3p [80]. FGD5-AS1 functions as a compet-
ing endogenous RNA (ceRNA) to enhance the expression 
of BHLHE40 through the interaction with miR-15a-5p in 
Pancreatic Cancers cells. BHLHE40, in turn, promotes 
the proliferation, migration, and apoptosis of these cells 
[81]. In Pancreatic Cancers, miR-577 serves as a down-
stream target of FGD5-AS1. It counteracts the prolif-
erative effects of FGD5-AS1 by binding to the 3’UTR of 
the LRP6 gene, thereby modulating the Wnt/β-catenin 
signaling pathway [82]. Furthermore, miR-577 can be 
absorbed by LINC01094, which stimulates the prolifera-
tion and metastasis of PDAC both in vitro and in vivo 
by activating the PI3K/AKT signaling pathway [83]. cir-
cRNA_0007334 competitive adsorbs miR-577 to enhance 
the migration ability of pancreatic ductal adenocarci-
noma cells [84]. Previous research has indicated that 
miR-454 can act as either an oncogene or a tumor sup-
pressor, depending on the cancer type. In the case of 
HCC, miR-454 has been shown to enhance cell prolif-
eration, invasion, and EMT. Additionally, miR-454 stimu-
lates the growth of tumors engrafted with HepG2 cells in 
vivo. Thus, in the context of HCC, miR-454 behaves as an 
oncogene [85]. miR-454 stimulates the proliferation and 
invasion of PC cells by activating the WNT/β-catenin 
signaling pathway [86]. Conversely, miR-454 has a potent 
effect in reducing tumor weight and volume in vivo by 
disrupting the Wnt signaling pathway in ovarian cancer 
[87]. It inhibits the proliferation and invasiveness of ovar-
ian cancer cells by targeting the E2F6 gene [88]. miR-454 
functions as a suppressor in tumor growth, angiogenesis 
in PDAC, by inhibiting Wnt/β-catenin signaling through 
targeting LRP6 [89](Fig. 2C). Moreover, miR-454-overex-
pressing formed significantly less PDAC lung metastases 
than control cells.

C. Oncogenic lncRNAs and circRNAs diminish the 
suppressive effects of tumor-suppressor miRNAs on 
LRP6, thereby promoting LRP6 expression and enhanc-
ing cell proliferation, metastasis, and angiogenesis.

Hepatocellular cancer
While a growing body of research suggests a link 
between LRP1 and cancer progression, the exact function 
and specific mechanisms by which it influences various 
cancer types remain subjects of ongoing discussionFur-
ther research is required to understand the role of LRP1 
in HCC. Existing studies have indicated that reduced 
LRP1 levels are correlated with a poor prognosis for HCC 
patients following curative surgery. The suppression 
of LRP1 is found to increase the expression of MMP9, 
which in turn boosts the migration and invasiveness of 
HCC cells in vitro and escalates the rate of pulmonary 
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metastasis in liver orthotopic tumors [3]. Previous study 
have reported that over expression of LRP4 is found in 
both HCC patients and a range of HCC cell lines. More-
over, LRP4 depletion also significantly reduces cellular 
proliferation and invasion ability [90]. overexpression of 
LRP4, is significantly associated with T stage, pathologic 
stage, vascular invasion, and poor prognosis for patients 
with HCC [91]. LRP4-MuSK signal is required in Agrin 

induces activation of YAP, and promoted liver cancer 
development [92].

Oncogenic function of lncRNA HUMT is revealed in 
TNBC. It is a metastasis-associated lncRNA and pre-
dicts poorer clinical prognosis [93, 94]. High expression 
of miR-455-5p significantly correlates with better overall 
survival in HCC tissues and blood exosomes [93]. miR-
455-5p has the capability to inhibit tumor growth, colony 
formation, as well as the migration and invasiveness of 

Fig. 2 The miRNA/LRPSs axis in Pancreatic cancer. (A) OIP5-AS1 upregulates LRP1 expression by inhibiting miR-429, thus augmenting invasion, metas-
tasis, and chemoresistance in pancreatic cancer. (B) H19 enhances LRP5/6 expression by suppressing miR-194, leading to increased proliferation and 
migration in pancreatic cancer
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cancer cells by disrupting the IGF-1R/AKT/GLUT1 path-
way. The reduction expression of miR-455-5p linkes to 
poorer patient outcomes [95]. lncRNA HOXA-AS3 pro-
motes the proliferation, migration, and invasion of HCC 
cells, modulates the cell cycle, and suppresses apoptosis 
via the regulatory axis involving miR-455-5p and PD-L1 
[96]. Intriguingly, research has uncovered that HUMT, 
which is overexpressed in HCC, functions as a miRNA 
sponge for miRNA-455-5p, leading to an increase in 
LRP4 levels and thus facilitating the proliferation and 
metastasis of HCC [97](Fig. 3A).

Likewise, the stimulation of the Wnt/β-catenin path-
way plays a crucial role in the development of hepatocel-
lular carcinoma HCC. As the upstream of LRP6 receptor 
interacts with FZD family which have seven transmem-
brane receptors to activate the Wnt/β-catenin pathway, 
LRP6 may play a role in hepatocarcinogenesis through 
hyperactivation of the Wnt/β-catenin pathway. LRP6 is 
found to be overexpressed in HCC, and its stable over-
expression in HCC cells leads to enhanced cell prolifer-
ation, migration, and invasion both in vitro and in vivo 
[98]. Elevated levels of LRP6 expression are linked to the 
aggressive characteristics and unfavorable outcomes in 
HCC. CCN2 binds with LRP6 and enhances the inva-
siveness, migration, and proliferation abilities in HCC 
through upregulating phosphorylation level of LRP6 [99]. 
Research has identified that ABCG1, an ATP-binding 
cassette transporter that facilitates tumor cell migration 
and invasion, is modulated by the LRP6-Wnt/β-catenin 
pathway in HCC [100]. Stimulation of the LRP6-Wnt/β-
catenin pathway results in elevated levels and activity of 
FRMD5, a protein that plays a pivotal role in the growth, 
mobility, tumor formation, and spread of HCC cells 
[101].

It is found that miR-1269a is deregulated in HCC 
[102]. miR-1269a is a signature for differentiating HCC 
patients from the healthy control [103]. Survival analy-
sis of clinical samples shows that miR-1269a is associ-
ated with prognosis in HCC [104]. miR-1269a suppresses 
the proliferation of HCC cells and induces apoptosis by 
repressing the expression of its target gene, LRP6 [105]. 
Decreased expression of miR-202 correlates with tumor 
dimensions, vascular invasion, and the TNM staging in 
HCC patients, as well as with diminished overall sur-
vival rates. miR-202 is capable of curbing cellular glu-
cose uptake, lactate generation, and proliferation by 
targeting the gene HK2 [106]. miR-202 significantly 
inhibits cell proliferation, migration, invasion and EMT, 
as well as induced apoptosis and cell cycle arrest and 
prevented tumor formation in vivo by downregulating 
BCL2 expression [107]. Furthermore, miR-202 hinders 
the proliferation, tumorigenic potential, and cell cycle 
advancement in HCC cells by directly targeting LRP6 
[108]. Research has shown that miR-432 levels are nega-
tively associated with the expression levels of β-catenin 
and LRP6. By directly targeting the 3’ UTRs of LRP6, 
miR-432 reduces the activity of the Wnt/β-catenin path-
way, thereby significantly inhibiting the proliferation of 
HCC cells [109]. A deficiency in miR-610 is observed in 
HCC cells and tissues, and this deficiency correlates with 
the survival rates of HCC patients. The downregulation 
of miR-610 reduces Wnt/β-catenin signaling by directly 
inhibiting LRP6, which in turn enhances the proliferation 
and tumorigenic capacity of HCC [110].

A multitude of studies have substantiated the onco-
genic function of TMPO-AS1 in various types of can-
cer. TMPO-AS1 acts as an enhancer of the aggressive 
characteristics of HCC cells by sequestering miR-320a 

Fig. 3 The miRNA/LRPSs axis in Hepatocellular cancer. (A) LncRNAs stimulate the expression of LRP4 by suppressing miR-455-5p, which in turn promotes 
cell proliferation, metastasis, and cell cycle progression in hepatocellular carcinoma. (B) Multiple miRNAs have been identified to negatively regulate 
LRP6 in hepatocellular carcinoma. Oncogenic lncRNAs and circRNAs counteract these miRNAs, increasing LRP6 expression and thereby promoting cell 
proliferation, invasion, metastasis, migration, and angiogenesis
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[111], miR-429 [112] and miR-329-3p [113]. TMPO-
AS1 promotes HCC proliferation, metastasis, and EMT 
by increasing LRP6. Additionally, TMPO-AS serves as 
a miRNA sponge for miRNA-126-3p, thereby activating 
the miR-126-3p/LRP6/β-catenin pathway [114]. Being a 
direct target of miR-126-3p, the protein levels of LRP6 
exhibit an inverse relationship with the expression of 
miR-126-3p, and it stimulates the metastasis and angio-
genesis of HCC both in vitro and in vivo [115]. DLGAP1-
AS1, functioning as a molecular sponge for miR-26a-5p 
and miR-26b-5, has been shown to contribute to the 
growth and metastasis of HCC. The target inhibitory 
effect of miR-26a/b-5p on LRP6 is reversed by DLGAP1-
AS1. DLGAP1-AS1 facilitates the progression of HCC 
and EMT by positively modulating the activity of the 
Wnt/β-catenin pathway through LRP6 [116].

circFBLIM1 is upregulated in HCC, which may inhibit 
growth and invasion, and promote apoptosis in HCC 
through sponging miR-346 [117]. circFBLIM1 is also 
over expressed in HCC serum exosomes and HCC cells. 
It accelerates the advancement and glycolytic activity of 
HCC by serving as a sponge for miR-338, thereby leading 
to an upregulation of LRP6 [118](Fig. 3B).

Gastric cancer
LRP4 exhibits elevated expression in gastric cancer (GC) 
and is associated with an unfavorable prognosis for GC 
patients. It enhances the migration, invasion, and EMT 

of GC cells by modulating the PI3K/AKT signaling path-
way. LRP4 serves as a direct target for miR-140-5p, and 
its levels are inversely associated with the expression of. 
miR-140-5p in GC tissues [6]. The expression of miR-
140-5p is notably reduced in GC tissues, and its levels 
are correlated with lymph node metastasis, TNM stage, 
and diminished overall survival rates in GC patients 
[119, 120]. miR-140-5p suppresses the proliferation and 
invasive capacity of GC cells by reducing the expression 
of WNT1 and β-catenin, and by directly targeting the 
3’UTR of the YES1 gene [119]. miR-140-5p is potentially 
implicated in the mediation of resistance to 5-FU in GC 
via the regulatory axis involving SNHG20/miR-140-5p/
NDRG3 [121](Fig. 4A).

Polymorphisms in the LRP5 gene are linked to an unfa-
vorable prognosis and diminished response to first-line 
chemotherapy with the EOF regimen in individuals suf-
fering from advanced GC [122]. LRP5 promotes pro-
liferation, invasion, migration and EMT in vitro in GC 
cell through Hsp90ab1-LRP5 interaction, thereby acti-
vates of the AKT and Wnt/β- catenin signaling pathways 
[123]. LRP5 is found in higher concentrations in GC tis-
sues and shows a positive correlation with the progres-
sion to advanced clinical stages and a poorer prognosis. 
It boosts the proliferation, invasiveness, and drug resis-
tance of GC cells by activating the Wnt signaling pathway 
and promoting aerobic glycolysis [8, 124]. The expression 
of the long non-coding RNA SBF2-AS1 is elevated in 

Fig. 4 The miRNA/LRPSs axis in Gastric cancer. (A) SNHG20 promotes LRP4 expression by suppressing miR-140-5p, enhancing proliferation, invasion, 
and migration in gastric cancer. (B) SBF2-AS1 enhances LRP5 expression by inhibiting miR-545, thereby promoting proliferation, invasion, EMT, and drug 
resistance in gastric cancer

 



Page 8 of 22Qu et al. Cancer Cell International          (2025) 25:182 

GC tissues and is associated with more advanced clinical 
stages and a lower survival rate. SBF2-AS1 promotes GC 
progression via targeting miR-545/EMS1 pathway [125]. 
While another study shows that miR-545-3p could have 
a suppressive effect on osteogenesis via targeting LRP5 
[126]. Intriguingly, in vitro SBF2-AS1 knockdown inhib-
its the Wnt/LRP5 signaling pathway [124](Fig. 4B).

Abnormal LRP8 expression have also been associated 
multiple digestive system tumors. An overabundance of 
LRP8 in Huh7 cells leads to a decrease in apoptosis and 
is a contributing factor to the resistance of HCC cells 
to sorafenib treatment [127]. LRP8 is high expression 
in pancreatic cancer, and contributed to cell cycle and 
cell proliferation through activating ERK1/2 pathway 
[20]. The antimigratory role of MPA is achieved through 
down-regulation of LRP8 in gastric cancer cell [128]. Fur-
thermore, miR-142 suppresses the proliferation, migra-
tion, invasion, and EMT of GC cells in vitro, as well as 
tumor growth in vivo, by directly targeting LRP8 [129].

Esophageal cancer
The expression of LRP6 is increased in esophageal squa-
mous cell carcinoma (ESCC). In addition, knockout of 
LRP6 inhibits migration, invasion and EMT of EC-109 
and EC-9706 cells [130].lncRNA ESCCAL-1 is upregu-
lated in ESCC for loss of methylation in its promoter 
[131]. It acts as a biomarker of poor prognosis, which 
exhibits promising diagnostic value [131–133]. ESC-
CAL-1 has been demonstrated to enhance the prolif-
eration, migration, and invasion of ESCC cells while 
simultaneously inhibiting their apoptosis [134]. It also 
suppresses the ubiquitin-mediated degradation of Gal-1, 
thereby promoting the progression of the cell cycle [133]. 
The ablation of the ESCCAL-1 gene markedly curbs 
the in vivo growth of ESCC cells [131, 135]. ESCCAL-1 
enhances the growth, migration, and invasion of ESCC 
by suppressing the miR-590/LRP6 pathway. Concur-
rently, LRP6, being a direct target of miR-590, intensifies 
the malignancy of cells via the activation of the Wnt/β-
catenin signaling pathway in ESCC [136].

The roles of miRNA-regulated LRPs in breast cancer
Although LRP1 plays a role in inhibiting tumor develop-
ment in many types of tumors, it may act as a different 
role in breast cancer (BC). The high expression of LRP1 
could predict decreased overall survival [137]. LRP1 
interacts with eHsp90α to regulate lymph angiogen-
esis by elevating the level of phosphorylated AKT [138]. 
eHsp90α-LRP1 complex activates EMT and migration in 
breast cancer cells through AKT, ERK and NF-κB path-
way [139]. Outgrowth of lamellipodia protrusions is one 
of the characteristics of cancer cell migration and metas-
tasis. LRP1 is capable of interacting with tPA to promote 
the formation of lamellipodia in breast cancer cells by 

triggering the NF-κB signaling pathway [140]. Acted as a 
receptor for secreted Hsp90α, LRP1 can inhibit hypoxia-
induced apoptosis of breast cancer cells via ERK1/2 and 
the Akt pathways [141]. LRP1 facilitates tumor growth 
and the formation of new blood vessels, known as angio-
genesis, in TNBC by modulating the TGF-β signaling 
pathway and the plasminogen/plasmin system [142]. 
LRP1 prompts migration and invasion of tumor cells in 
serum-free conditions by combined activating EGFR and 
the eHsp90α autocrine signaling [143].

It has been established that LRP6 is excessively 
expressed in BC [139]. Elevated levels of LRP6 expression 
are notably correlated with the status of HER-2 and Ki67. 
Patients with luminal B type BC who exhibit high LRP6 
expression levels have significantly poorer survival rates 
compared to those with low LRP6 expression. LRP6 stim-
ulates the formation of clones, invasion, and wound heal-
ing in MCF-7 and MCF-10 A cell lines. The suppression 
of LRP6 leads to the inhibition of xenograft growth [144]. 
Acting as a co-receptor for the Wnt/β-catenin pathway, 
LRP6 can enhance the progression of TNBC, as well as 
cell migration and invasion, by modulating the Wnt/β-
catenin pathway [13].

miR-424 have been reported to be down-regulated in 
NSCLC, cervical cancer, ovarian cancer, prostate can-
cer and some digestive system tumor [145]. miR-424 
regulates the cell cycle and cell proliferation probable 
by targeting CDK1, through the Hippo and ERK path-
way [146]. The expression of miR-424 prompts invasion 
ability in extremely aggressive TNBC cell lines by direct 
targeting CDC42, thus inhibited tumorigenesis and 
metastasis in xenograft [147]. LRP6 is likely the most sig-
nificant miR-424 target in the canonical wnt signaling. 
miR-424 exerted its function by reducing LRP6 mRNA 
levels and protein expression in BC cells [148]. In BC cell 
lines, the expression levels of miR-130a-3p are found to 
be reduced [149]. miR-130a-3p is also the target gene of 
several lncRNA. The expression of lncRNA HOTAIR was 
increased in BC. It associated with the metastasis in vitro 
and vivo and poor prognosis of patients through acting as 
a spong of endogenous miR-130a-3p [150]. Concurrently, 
the H19 hastens the proliferation, migration, and inva-
sion of BC cells, and it also intensifies apoptosis through 
the miR-130a-3P/SATB1 pathway during the progression 
of BC [151]. Furthermore, miR-130a-3p hinders the pro-
liferation, migration, and invasive capabilities of cells by 
specifically targeting the RAB5B gene [152]. Elevated lev-
els of miR-130a-3p curb the proliferation, growth in the 
absence of attachment, and migratory behavior of TNBC 
cells by reducing the expression of WNT cascade genes, 
including LRP6 [149, 153]. Bioinformatic analysis sug-
gests that LRP6 is likely a target gene for miR-130a-3p, 
which has the potential to repress the mRNA expression 
of LRP6 [153](Fig. 5).
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LRP8 is highly expressed in breast cancer, especially 
in ER−/HER2 + BC and TNBC [16, 154, 155]. Increased 
expression of LRP8 correlates with an unfavorable 
prognosis for BC patients [155]. LRP8 controlled cell 
survival, colony formation, cell cycle progression and 
tumorigenicity in a xenograft model in TNBC through 
canonical Wnt/β-catenin signaling pathway and MAPK 
pathways [16, 154]. Bioinformatics prediction and lucifer-
ase reporter assay confirms that miR-1262 is an upstream 
factor for LRP8 [155]. Previous studies find that overex-
pression of miR-1262 inhibited colon cancer [156], Gas-
tric cardia adenocarcinoma (GCA) [157] and lung cancer 
[158]. miR-1262 diminishes the proliferative, clonogenic, 
invasive, and migratory abilities of BC cells, capabilities 
that are otherwise augmented by LRP8 [155].

The roles of miRNA-regulated LRPs in prostate 
cancer
Previous research indicated that LRP1B ranks among the 
top 10 genes most frequently absent in human cancer 
samples [159]. Meanwhile LRP1B is also one of the most 
recurrently mutated genes in prostate adenocarcinoma 
[160]. LRP1B mutations may have improved outcomes 
to ICI in many cancer types [161]. LRP1B can signifi-
cantly inhibit growth and migration of colon cancer by 
interacted with DVL2 [162]. Diminished expression of 
LRP1B in renal cancer cells facilitates the processes of 
invasion, migration, and growth without the need for 
attachment [163]. miR-301b-3p exhibits increased lev-
els in PC. A rise in miR-301b-3p expression correlates 
with a decrease in LRP1B mRNA levels within prostate 
cancer cells. miR-301b-3p is found to stimulate tumor 
progression, including growth, migration, and invasion, 
by directly suppressing LRP1B [164]. The expression of 
miR-500 is elevated in prostate cancer and is linked to 

Fig. 5 The miRNA/LRPSs axis in breast cancer. miRNAs exert an inhibitory effect on the expression of LRP6, thereby impeding breast cancer progression. 
Conversely, lncRNAs can counteract the suppressive function of these miRNAs by downregulating their expression, leading to enhanced tumor prolifera-
tion, invasion, and migration in breast cancer
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adverse clinical outcomes for patients with the disease. 
Knock-down of miR-500 inhibits PC growth [165] In PC 
tissues and cells, miR-500 is observed to be excessively 
expressed, while the expression of LRP1B is notably 
reduced. miR-500 is implicated in promoting cell prolif-
eration and the cell cycle progression by specifically tar-
geting LRP1B within PC cells [166].

miR-455-5p functions as a suppressor of tumorigenesis 
across a range of cancers, curtailing cellular proliferation, 
as well as the migration and invasion. In the context of 
PC, miR-455-5p serves as a tumor suppressor, hinder-
ing the proliferation of PC cells and inducing apoptosis 
by activating and cleaving caspase 3, as well as by tar-
geting the CCR5 gene [167]. miR-455-5p is significantly 
under-expressed in PC, and its reduced levels are cor-
related with a less favorable prognosis for patients with 
the disease. miR-455-5p impedes the migration and inva-
siveness of prostate cancer cells. The increased expres-
sion of miR-455-5p is known to repress the expression 
of LRP8, which has been confirmed as a target gene for 
miR-455-5p using the TargetScan Human 7.1 database. 
High levels of LRP8 expression correlate with a negative 
outcome for patients with prostate cancer [168].

The roles of miRNA-regulated LRPs in thyroid 
carcinoma
CpG island methylation and DNA copy number loss often 
occurs in LRP1B in thyroid carcinoma (TC). LRP1B func-
tions to suppress tumorigenesis by curbing the growth 
and invasion of TC cells [169–171]. LRP1B expression 
is down-regulated in TC cells [172]. miR-548a-5p was 
overexpressed in cancer cell lines, and prompts tumor 
growth, cell invasion and MMP-2 reduction by targeting 
LRP1B in vitro and in vivo [173]. miR-196a-5p is up-reg-
ulated in TC tissue and showed an oncogenic role in TC 
cells [174]. It enhances the proliferation, migration, and 
invasion of TC cells through direct binding to the 3’UTR 
of the LRP1B gene [172] (Fig. 6A).

It has been documented that LRP4 is excessively 
expressed in PTC. The SNPs within the LRP4 gene sig-
nificantly influence an individual’s genetic predisposition 
to PTC [175]. LRP4 influences the proliferation, migra-
tion, invasion, and EMT of cells through the activation 
of the PI3K/AKT pathway [5]. miR-199a-5p impedes 
tumor migration, invasion, and EMT in living organisms 
by reducing the expression of SNAI1 [176]. miR-199a-5p 
curbs cell migration and invasion through the down-
regulation of PD-L1 and Claudin-1 [177]. miR-199a-5p 
diminishes the viability of TC cells by reducing the pro-
portion of cells in the G2/M and S phases [178]. LRP4 
may be the target gene of miR-199a-5p predicted by the 
miRWalk database (version 2.0) [179] miR-429 exhibits 
reduced expression in TC tissues and cell lines. It inhib-
its the proliferation, migration, and invasion of cells, and 

also induces apoptosis in the TC cell line [180]. In thy-
roid carcinoma, miR-429 is the target gene of multiple 
lncRNAs. OIP5-AS1 enhances the proliferation, metas-
tasis and inhibited the apoptosis via adsorbing miR-429 
[181]. miR-429 is the target of RNF185-AS1. RNF185-
AS1 enhances tumor growth both by sequestering miR-
429, thereby facilitating the expression of LRP4 [182] 
(Fig. 6B).

LRP6 exert as highly tumor-promoting function by 
activating Wnt/β-catenin pathway in PTC [183]. miR-
146b-5p is over expression and shows correlation with 
the clinicopathological status of PTC. miR-146b-5p 
stimulates cell proliferation, migration, invasion, and 
cell cycle advancement in vitro by directly binding to 
the CCDC6 [184]. The Wnt/β-catenin signaling pathway 
is pivotal in the progression of TC [185]. Different from 
other miRNA that targeted LRP6, miR-146b-5p played 
a role in promoting LRP6 expression. miR-146b-5p 
increases the LRP6 through directly targeted ZNRF3, 
which leading to the ubiquitination and degradation of 
LRP6 [183]. miR-1271 is under-expressed in PTC, where 
it impedes cell migration, invasion, proliferation, and 
EMT by targeting IRS1 and inhibiting the AKT pathway 
[186]. LRP6 has been identified as a direct target of miR-
1271. In PTC, the upregulation of Circ_0011373 seques-
ters miR-1271, leading to increased expression of LRP6. 
This mechanism may potentially influence the cell cycle, 
migration, invasion, and apoptosis of PTC cells [187] 
(Fig. 6C).

The roles of miRNA-regulated LRPs in reproductive 
system cancers
The NCBI database indicates that LRP6 is abundantly 
expressed in placental tissues, yet it shows low expres-
sion in trophoblast cell lines when compared to JEG-3 
gestational choriocarcinoma cells. The overexpression 
of LRP6 is found to enhance the proliferation and migra-
tion of trophoblast cells by upregulating the expression of 
MMP-2 and MMP-9, while also reducing the levels of tis-
sue inhibitors of TIMP-1 and TIMP- 2. Conversely, miR-
346 is more highly expressed in trophoblast cell lines 
than in JEG-3 gestational choriocarcinoma cells. Elevated 
levels of miR-346 are observed to suppress the prolifera-
tion of these cells and decrease their migration and inva-
sion rates by directly targeting LRP6 in both JEG-3 and 
gestational choriocarcinoma cells [188].

An excess of LRP8 notably boosts the proliferation, 
migration, and invasive capabilities of ovarian cancer 
cells. There is an inverse relationship exists between the 
expression levels of miR-362-3p and LRP8 in ovarian 
cancer. miR-362-3p hinders the proliferation, migration, 
and invasion of ovarian cancer cells by directly target-
ing LRP8, which results in the downregulation of MMP-
2, MMP-9, as well as integrins α5 and β1 [189]. Multiple 
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investigations have uncovered miR-362-3p’s regulatory 
influence in ovarian cancer, showing that it is under-
expressed in both epithelial ovarian cancer tissues and 
cell lines. It suppresses cell proliferation and migration 
through the downregulation of MyD88 expression [190]. 
miR-362-3p also impedes the growth and advancement 
of ovarian cancer by directly interacting with its target 
gene SERBP1 in vivo [191]. Intriguingly, MALAT1 could 
prompt proliferation, invasion, and SU chemoresistance, 

but inhibits apoptosis through interact with miR-362-3p 
in RCC [192]. Reducing the levels of MALAT1 can curb 
the proliferation and diminish the invasive and migra-
tory capacities in HCC by targeting miR-362-3p [193]. 
MALAT1 could also bind miR-195 to up-regulate LRP6 
expression in CRC [55]. Based on the above conclusions, 
miR-362-3p may perform as a regulator of LRP6 in ovar-
ian tumors, but no relevant research has been found so 
far.

Fig. 6 The miRNA/LRPSs axis in thyroid carcinoma. (A) IQCH-AS1 upregulates the expression of LRP1B by suppressing miR-196a-5p, consequently pro-
moting proliferation, invasion, and migration in thyroid carcinoma. (B) LncRNAs stimulate the expression of LRP4 by inhibiting miR-429, thereby enhanc-
ing tumor proliferation, invasion, and migration in thyroid carcinoma (C) In hepatocellular carcinoma, miRNAs have been identified to negatively regulate 
LRP6. Furthermore, the circRNA Circ_0011373 can inhibit miR-127, leading to increased LRP6 expression and promoting cell proliferation, invasion, migra-
tion, and EMT
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The roles of miRNA-regulated LRPs in melanoma
LRP1 level is highly elevated in melanoma tissues. LRP1 
is indispensable in YAP-induced melanoma tumorigen-
esis in vitro and in vivo [194]. LRP1 plays a crucial role 
in PAI-1-induced FAK phosphorylation and the invasive 
behavior of macrophages in melanoma [195]. Moreover, 
LRP1 enhances melanoma cell proliferation and massive 
lung metastasis by activating ERK and MMP-9. It is also 
critical for drug resistance [196]. APOE2/LRP1 axis may 
play important roles in tumor growth, metastasis, and 
protein synthesis in melanoma [197].

miR-103 and miR-107 are miRNAs related to each 
other, with a difference of just one base in their 3’ regions 
[198]. They have different functions in different tissues. 
Research has shown that the miR-103/107 cluster pro-
motes the mobility of CRC cells by directly targeting 
metastasis suppressors, including death-associated pro-
tein kinase DAPK and KLF4 [36], triggers a prolonged 
duration of Wnt/β-catenin signaling by targeting Axin2 
[37]. miR-103/107 modulates cell proliferation via the 
PI3K/AKT signaling pathway, in part by directing its 
action towards the PTEN [199]. Additional research has 
assessed that miR-103/107 diminishes the functional-
ity of P-gp thereby increasing the sensitivity of GC cells 
to the chemotherapeutic agent DOX by targeting Cav-1 
[200]. In melanoma, miR-107 is significantly downregu-
lated, miR-107 can reduce cell proliferation, migration 
and invasion by targeting POU3F2 in melanoma [201]. 
Moreover, LINC00662 facilitates the advancement of 
melanoma by engaging the miR-107/POU3F2 regula-
tory axis and stimulating the β-catenin pathway [202]. 
miR-103/107 reduces cell proliferation and induced cell 
apoptosis by targeting LRP1 [203]. The function of LRP1 
in different melanoma cells may also be different. A study 
found miR-199a-3p, miR-199a-5p, and miR-1908 which 
predicted metastasis-free survival in melanoma promote 
metastasis, invasion, and angiogenesis of melanoma by 
targeting APOE3 and suppressing LRP1 signaling [204] 
(Fig. 7).

The roles of miRNA-regulated LRPs in glioblastoma
The expression of LRP1 is increased under hypoxia, it 
facilitates glioblastoma (GBM) motility and invasion 
in an AKT dependent manner [205]. LRP1 is expressed 
on mast cells (MCs) and is critical for migration of MCs 
induced by PAI-1 [206]. LRP1 is strongly expressed in the 
angiogenic part of the tumor, and glioblastoma cells. It 
acts as a regulator of CXCR3, which prompts tumor cell 
invasion [207]. LRP1 facilitates drug delivery system such 
as Au-DOX@PO-ANG due to its capacity to penetrate 
the blood-brain barrier and access the central nervous 
system [208]. The expression of LRP-1 is significantly 
higher in GBM, LRP-1 prompts cell survival, proliferative 
migration, and decreases apoptosis [209]. In GBM cell 

line, LRP1 and miR-124-3p could be identified as hypoxia 
biomarkers [210]. Whether LRP1 is regulated by miR-124 
have not been reported. Recent studies have found that 
miR-124, miR-128 may inhibit the expression of LRP1 by 
targeting ELF4 [211].

miRNA-205 is markedly under-expressed in glioma, 
functioning as a suppressor of tumor growth by specifi-
cally targeting VEGF-A [212, 213]. The serum concen-
tration of miR-205 is independently linked to overall 
survival rates and is identified as an individual diagnos-
tic marker [214]. miR-205 inhibits cell migration, inva-
sion and prevented EMT through inhibiting of the Akt/
mTOR signaling pathway in GBM [215]. miR-205 is 
crucial in counteracting the self-renewal of glioma stem 
cells (GSCs) and their resistance to irradiation [212]. The 
3’UTR of the LRP1 gene can be targeted by miR-205, 
which suppresses cell migration and invasion through the 
reduction of LRP1 expression [216](Fig. 8A).

LRP6 is highly expressed in gliomas, the expression 
of LRP6 links with overall survival in all glioblastoma 
[217, 218]. Elevated levels of LRP6 expression are recog-
nized for initiating Wnt pathway activation, promoting 
cell proliferation, and contributing to the development 
of tumors in glioblastoma cells [219]. The expression of 
miR-513c is found to be reduced in tissues and cell lines 
of GBM. miR-513c suppresses the proliferation of GBM 
cells by directly targeting the 3’UTR of the LRP6 gene 
[220]. Additionally, miR-513c-5p facilitates the suppres-
sion of neuroblastoma cell proliferation, colony forma-
tion, and invasive capabilities by modulating the silencing 
of DLX6-AS1, it also causes cell cycle arrest and apopto-
sis through the PLK4 pathway in vitro [221]. LOC728196 
acts as a molecular sponge to miR-513c, which in turn 
facilitates the growth, migration, and invasiveness of gli-
oma cells by modulating the expression of TCF7 [222].

miR-137 exhibits reduced expression levels in glioblas-
toma, and its diminished levels correlate with an unfavor-
able prognostic profile for individuals afflicted with GBM 
[223]. miR-137 deduces GBM cell proliferation, invasion 
and angiogenesis by targeting a series of genes, includ-
ing EZH2, Cox-2, CXCL12, SP1 and CSE1L [224–228]. 
miR-137 curbs the proliferation of glioblastoma and leads 
to G1 phase cell cycle arrest in glioblastoma multiforme 
cells [229]. miR-137 inhibits proliferation, migration and 
invasion of glioblastoma through Akt/mTOR signaling by 
targeting PTP4A3 [230]. miR-137 enhances cell growth 
and reduces cell apoptosis by targeting the 3’-UTR of the 
EGFR [231]. The downregulation of HOTAIRM1 expres-
sion impeded the proliferation and invasive capabilities 
of glioblastoma cells by serving as a sponge to miR-137 
[227]. lncRNA HAS2-AS1 promotes proliferation of 
GBM cell and tumorigenesis of nude mouse by down-
regulating of miR-137 [232]. miR-137 sensitized GBM 
cells to the TRAIL-mediated apoptosis by targeting XIAP 
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[233]. LRP6 is a target gene of miR-137, which can sup-
press invasion, EMT and enhance the chemosensitivity of 
GBM cells to TMZ by reducing LRP6 expression, subse-
quently affecting β-catenin and its downstream signaling 
pathways [218].

LINC01094 exhibits elevated expression levels in tis-
sues and cell lines of GBM [234, 235]. LINC01094 facili-
tates the proliferation, migration, and invasion of cells, 
and suppresses apoptosis by acting as a sponge for 
miR-126-5p [235] and miR-577 [234] in GBM. miR-577 
is found to be under-expressed in GBM tumor samples 
and cell lines, where it inhibits GBM growth by directly 
targeting LRP6 and β-catenin [236]. miR-126 have been 
reported to regulate the expression of LRP6 in many 
tumors and non-tumor diseases [115, 237–241]. Whether 
LINC01094 can regulate LRP6 through miR-126 and 
miR-577 in GBM needs further study.

ADAMTS9AS1 is upregulated in GBM tissues and cell 
lines. ADAMTS9-AS1 influences the proliferation, apop-
tosis, migration, and stem-like properties of glioma cells 
[187]. ADAMTS9-AS1 may have a complex regulatory 
effect on LRP family members. In GBM, ADAMTS9-
AS1 is capable of interacting with miR-128 and miR-150, 
leading to the upregulation of the RAS/MAPK signaling 
pathway, as well as the LRP6 and Wnt pathways [242]. 
In breast cancer, ADAMTS9-AS1 can activate the JAK/ 
STAT signaling by binding miR-301b-3p [243]. miR-
301b-3p could potentially enhance the proliferation, 
migration, and invasiveness of PC cells by targeting 
LRP1B [164]. For ADAMTS9-AS1 is under-expressed in 
PC and may serve as a prognostic indicator for the over-
all survival of PC patients. It is believed that ADAMTS9-
AS1 could exert its tumor-suppressive role by modulating 
LRP1B in prostate cancer (Fig. 8B).

Fig. 7 The miRNA/LRPSs axis in melanoma. LINC00662 promotes the expression of LRP1 by suppressing miR-107, which in turn enhances proliferation, 
invasion, metastasis, and drug resistance in melanoma

 



Page 14 of 22Qu et al. Cancer Cell International          (2025) 25:182 

The roles of miRNA-regulated LRPs in lung cancer
A study indicates that LRP5 is under-expressed in six 
out of seventeen cases of lung squamous cell carcinoma 
[244]. The LRP5 rs3736228 and rs64843 SNPs have been 
notably linked to an elevated risk for NSCLC and squa-
mous cell carcinoma (SCC), respectively [245]. There was 
a robust inverse relationship between miR-375 expres-
sion levels and LRP5 in both Adenocarcinoma (AC) and 
Small Cell Lung Cancer (SCLC). Previous research has 
demonstrated that miR-375-3p inhibits osteogenesis by 
targeting the LRP5 gene in MC3T3-E1 cells [246]. In H82 
cells, the luciferase activity of the reporter for the puta-
tive target sites within the 3’UTR of the LRP5 mRNA was 
not significantly reduced by miR-375, and the ectopic 
expression of miR-375 had minimal impact on the sup-
pression of the LRP5 protein. It suggests that miR-375 
may regulate LRP5 through indirect pathways [247]. 
Therefore, more experimental results are needed to con-
firm the regulatory mechanism of miR-375 on LRP5 in 
lung cancer.

The earliest research found that overexpression of 
LRP8 is observed in 11 of the 13 lung cancer samples. 
This result suggests that LRP8 may play an oncogenic 
role in lung cancer [248]. Previous studies have indicated 
that LRP8 correlates with adverse clinicopathological fea-
tures and the prognosis of patients with NSCLC. LRP8 
has been shown to enhance the proliferation of NSCLC 
cells both in vitro and in vivo, and it plays a role in the 
progression and metastasis of NSCLC by modulating 
the Wnt/β-catenin signaling pathway [15]. miR-30b-5p 
is significantly correlated with the overall survival rate 
of lung cancer, which can be utilized to develop a risk 
scoring model serving as a prognostic signature for lung 

cancer [249]. miR-30b-5p exhibits low expression in 
A549/DDP cells and enhances their sensitivity to DDP. It 
targets LRP8 in lung cancer, and the increased sensitiv-
ity of A549 cells to DDP induced by miR-30b-5p can be 
negated by the overexpression of LRP8 [250].

The roles of miRNA-regulated LRPs in other type of 
cancers
The expression LRP1 is strong in dermatofibrosar-
coma protuberans (DFSP), but weak in dermatofibroma 
(DF), but is not seen in normal fibroblasts [251]. Previ-
ous research find miR-205 as the most differentially 
expressed miRNA on cutaneous squamous cell carci-
noma (cSCC) and malignant skin cancer [252]. miR-205 
prompts cell cycle arrest at the G2M phase in melanoma 
cell line [253] and suppressed the migration, invasion 
and proliferation of cancer cell [254]. LRP1 is a target of 
miR-205. In DFSP, the downregulation of miR-205 results 
in aberrant cell proliferation, which losing the ability to 
inhibit the expression of LRP1 and triggers the ERK path-
way [251]. miR-196a directly targets LRP4 in neuroen-
docrine tumor cell lines CNDT2.5 and NCI-H727, and it 
modulates downstream genes associated with the WNT 
signaling pathway, including LRP5 and LRP6 [255].

Conclusion and remarks
In recent years, a multitude of scientific experiments 
have played a significant role in exploring new molecu-
lar mechanisms of tumors, developing new tumor treat-
ment strategies, and researching new anti-tumor drugs. 
Studying the molecular pathways of tumors is of great 
significance for a deeper understanding of the biological 
characteristics and development mechanisms of tumors, 

Fig. 8 The miRNA/LRPSs axis in glioblastoma. reduce apoptosis in glioblastoma. (A) miR-429 inhibits the expression of LRP1, which can induce prolifera-
tion, migration, and survival of glioblastoma cells, while reducing apoptosis. (B) Tumor suppressor miRNAs in glioblastoma exert their inhibitory function 
on cancer progression by inhibiting LRP6. Oncogenic lncRNAs, on the other hand, augment LRP6 expression by suppressing these miRNAs, thereby 
inducing cell proliferation, tumorigenesis, EMT, invasion, and chemotherapy resistance, and reducing apoptosis in glioblastoma
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Table 1 The regulatory roles of MiRNA in various human malignancies
Cancer Type miRNA Signaling Pathways/Targeting Gene References
Colorectal cancer miR-103 LRP1, p53, HIF-1.  [29–30]

miR-107 LRP1, PRE3/4.  [31–33]
miR-92a LRP6, DKK3.  [49]
miR-15 LRP6, RUNX2.  [55]
miR-487b LRP6, MYC, SYZ12, KRAS.  [58]

Pancreatic cancer miR-429 LRP1, TBK1, FOXD1, ERK.  [63–64, 66–67]
miR-26b LRP6, CDK14  [73]
miR-194 LRP6  [74]
miR-15a-5p BHLHE40  [81]
miR-577 LRP6, PI3K/AKT, LIN28B, COL1A1  [82–84]
miR-454 LRP6  [89]

Hepatocellular cancer miR-455-5p IGF-1R, AKT, GLUT1, PD-L1, LRP4  [95–97]
miR-1269a LRP6  [105]
miR-202 HK2, BCL2, LRP6  [106–108]
miR-432 WNT/β-catenin signaling, LRP6.  [109]
miR-610 -catenin, LRP6,  [110]
miRNA-126-3p LRP6, WNT/β-catenin signaling  [114]
miR-26a/b-5p LRP6, WNT/β-catenin signaling  [116]
miR-338 LRP6  [118]

Gastric cancer miR-140-5p LRP4, WNT/β-catenin signaling, YES1, NDRG3  [6, 119, 121]
miR-545-3p EMS1, LRP5  [125, 126]
miR-142 LRP8, ERK  [20]

Esophageal Cancer miR-590 LRP6, WNT/β-catenin signaling  [136]
breast cancer miR-424 CDK1, CDC42, LRP6  [146–148]

miR-130a-3p SATB1, RAB5B, AKT/mTOR signaling, LRP6  [151–153]
miR-1262 WNT/β-catenin signaling, MAPK, LRP8  [16, 154–155]

Prostate cancer miR-301b-3p LRP1B  [164]
miR-500 LRP1B  [166]
miR-455-5p Caspase-3, CCR5, LRP8  [167–168]

Thyroid carcinoma miR-196a-5p LRP1B, PPP2R1B  [172, 174]
miR-548a-5p MMP-2, LRP1B  [173]
miR-199a-5p SNAI1, PD-L1, Claudin-1  [176–177]
miR-429, XIAP, LRP4  [181–182]
miR-146b-5p LRP6, ZNRF3, CCDC6, WNT/β-catenin signaling  [183–185]
miR-1271 IRS, AKT, LRP6, WNT/β-catenin signaling  [186–187]

Reproductive system cancers miR-346 LRP6  [188]
miR-362-3p MMP-2, MMP-9, integrins α5, integrins β1 SERBP1  [189–191]

Melanoma miR-103/107 DAPK, KLF4, Axin2, AKT, PTEN Cav-1, POU3F2, β-catenin, 
LRP1

 [36, 37, 
199–203]

miR-199a-3p/5p, miR-1908 APOE3, LRP1  [204]
Glioblastoma miR-124 ELF4, LRP1  [211]

miRNA-205 VEGF-A, AKT/mTOR signaling, LRP1  [212–216]
miR-513c LRP6, PLK4, TCF7  [220–222]
miR-137 LRP6, EZH2, Cox-2, CXCL12, SP1, CSE1L, PTP4A3, XIAP  [218, 224–228, 

230, 233]
miR-577 LRP6, WNT/β-catenin signaling  [236]
miR-128, miR-150, miR-577, 
miR-126

RAS/MAPK signaling, LRP6, WNT/β-catenin signaling  [115, 236–242]

Lung cancer miR-375 LRP5  [246]
miR-30b-5p LRP8  [250]

Dermatofibrosarcoma protuberans miR-205 LRP1, ERK  [251]
Neuroendocrine tumor miR-196a LRP4, LRP5, LRP6  [255]
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as well as for guiding clinical treatment. The LRPs fam-
ily, a group of transmembrane proteins, is crucial for 
cellular signal transduction and participates in a multi-
tude of biological processes. A growing body of research 
indicates that the LRPs family is instrumental in tumor 
biology, with functions ranging from the facilitation or 
suppression of tumor cell proliferation, migration, and 
survival to the modulation of the tumor microenviron-
ment. LRPs are involved in the regulation of many key 
oncogenes, and they also act as target genes for a range of 
microRNAs. Here, we have elaborated the role of miRNA 
in regulating LRP and its downstream genes in the patho-
genesis of various human malignancies (Table  1). Prog-
ress in miRNA/LRP research in human oncology holds 
the promise of elucidating the intricate molecular con-
trols of cancer, potentially pointing the way for novel ave-
nues in cancer management and therapeutics.

Abbreviations
3’  UTR 3’ untranslated region
5-FU  5-fluorouracil
A549/DDP  A cisplatin drug resistant cell line
ABCG1  ATP-binding cassette transporter G1
AC  Adenocarcinoma
ADAMTS9AS1  ADAMTS9 Antisense RNA 1
AKT  Protein kinase B
APOE  Lipid transporter apolipoprotein E
Axin2  Axis Inhibition Protein 2
BC  Breast cancer
BCL2  B-cell lymphoma/leukemia type 2
BHLHE40  Basic helix-loop-helix domain containing, class b, 2
Cav-1  Caveolin-1
CCDC6  Coiled-coil domain containing 6
CDC42  Cell division control 42
CDK1  Cyclindependent kinase 1
CDK14  Cyclin-dependent kinase 14
ceRNA  Endogenous RNA
circFBLIM1  CircRNA filamin binding LIM protein 1
Cox-2  Cyclooxygenase-2
CRC  Colorectal cancer
cSCC  Cutaneous squamous cell carcinoma
CSE1L  CSE1 chromosome segregation 1-like
CXCL12  C-X-C motif ligand 12
CXCL12  CXC chemokine ligand 12
CXCR3  CXC chemokine receptor 3
CXCR4  CXC chemokine receptor 4
DAPK  Death-associated protein kinase
DF  Dermatofibroma
DFSP  Dermatofibrosarcoma protuberans
DKK3  Dickkopf-3
DLGAP1-AS1  Discs large associated protein 1 antisense RNA 1
DLX6-AS1  Distal-less homeobox 6 antisense RNA 1
Dox  Doxorubicin
DVL2  Dishevelled segment polarity protein
E2F6  E2F transcription factor 6
EGFR  Epidermal growth factor receptor
eHsp90  Hsp90 protein
eHSP90α  Extracellular heat shock protein-90α
ELF4  E74-like factor 4
EMS1  Eleven-Nineteen Lysine-Rich Carcinoma-Related Gene 1
EMT  Epithelial-to-mesenchymal
EOF  Epirubicin, Oxaliplatin, and 5-Fluorouracil
ERK1/2  Extracellular signal-regulated kinase1/2
ESCC  Esophageal squamous cell carcinoma
ESCCAL-1  Esophageal squamous cell carcinoma-associated lncRNA-1
EZH2  Enhancer of zeste homolog 2

FAK  Focal adhesion kinase
FGD5-AS1  FYVE, RhoGEF, and PH domain containing 5 antisense RNA 1
FRMD5  FERM domain containing 5
FZD  Frizzled
Gal-1  Galectin-1
GBM  Glioblastoma
GC  Gastric cancer
GLUT1  Glucose transporter type 1
GSC  Glioma stem cells
HAS2-AS1  Hyaluronan Snthase 2 Antisense RNA 1
HCC  Hepatocellular carcinoma
HER-2  Human Epidermal Growth Factor Receptor 2
HIF-1  Hypoxia-inducible factor-1
HOTAIR  LncRNA HOX transcript antisense intergenic RNA
HOXA-AS3  HOXA cluster antisense RNA 3“
HUMT  Human Mitochondrial Translation
ICI  Immune checkpoint inhibitors
IGF-1R  Insulin-like growth factor 1 receptor
IQCH-AS1  IQCH antisense RNA 1
IRS1  Insulin receptor substrate 1
JAK  Janus kinase
KLF4  Krüppel-like factor 4
KRAS  Kirsten ras oncogene
LINC01094  Long intergenic non-protein coding RNA 1094
LncRNA  Long non-coding RNA
LOC728196  MIR34B and MIR34C host gene
LRPs  Low-density lipoprotein receptor-related protein
MALAT1  Metastasis associated with lung adenocarcinoma transcript 

1
MAPK  Mitogen-activated protein kinase
MCs  Mast cells
MIF  Macrophage migration inhibitory factor
miRNAs  MicroRNAs
MMP-2  Matrix metalloproteinase 2
MMP-9  Matrix metalloproteinase 9
MPA  Mycophenolic acid
mRNA  Messenger RNA
mTORC1  Mechanistic target of rapamycin complex 1
MyD88  Myeloid differentiation factor88
NCBI  National Center for Biotechnology Information
NDRG3  N-myc downstream-regulated gene 3
NF-κB  Nuclear factor-kappa B
NSCLC  Non-Small Cell Lung Cancer
NT-3  Neurotrophin-3
OIP5-AS1  Opa Interacting Protein 5 Antisense RNA 1
OS  Overall survival
PAI-1  Plasminogen activator inhibitor-1
pak1  P-21-activated kinase 1
PC  Prostate cancer
PDAC  Pancreatic ductal adenocarcinoma
PD-L1  Programmed Death-Ligand 1p
PFS  Progression-free survival
P-gp  P-glycoprotein
PI3K  Phosphoinositide 3-kinase
PLK4  Polo-like kinase 4
POU3F2  POU Class 3 Homeobox 2“
PPP2R1B  Protein phosphatase 2
prdm14  PR-domain containing 14
PRE3/4  Proteasome subunit pre3/4
PTC  Papillary thyroid cancer
PTEN  Phosphatase and tensin homologue deleted on 

chromosome ten
PTP4A3  Protein tyrosine phosphatases (PTP) 4A3
RAB5B  Ras-related protein Rab-5B
RAS  Renin-Angiotensin System
RCC  Renal cell carcinoma
RNF185-AS1  RNF185 Antisense RNA 1
RUNX2  Runt-related transcription factor 2
SATB1  Special AT-rich sequence-binding protein-1
SBF2-AS1  SET-binding factor 2 antisense RNA1
SCC  Squamous cell carcinoma
SCLC  Small Cell Lung Cancer
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SERBP1  Serum amyloid a binding protein 1
SNAI1  Snail family zinc finger 1
SNHG20  Small nucleolar RNA host gene 20
SNPs  Single nucleotide polymorphisms
SP1  Specificity Protein 1
STAT  Signal transducer and activator of transcription
SU  Sunitinib
SUZ12  Suppressor of Zeste 12
TC  Thyroid carcinoma
TCF7  Transcript tion factor 7
TIMP-1  Tissue inhibitor of metalloproteinase-1
TIMP-2  Tissue inhibitor of metalloproteinase-2
TMPO-AS1  Thymopoietin associated lncRNA 1
TMZ  Temozolomide
TNBC  Triple-negative breast cancer
TNM  Tumor-node-metastasis
tPA  Tissue plasminogen activator
VEGF-A  Vascular endothelial growth factor A
WNT  Wingless-Type MMTV Integration Site Family
XIAP  X-linked inhibitors of apoptosis protein
YAP  Yes-associated protein
YES1  Yamaguchi sarcoma viral oncogene homolog 1
ZNRF3  Zinc RING finger 3
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